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ABSTRACT: The in-cylinder pressure analysis provides important information on the combustion process and 
stands as an invaluable tool in the internal combustion engine research & development. Its implementation in a 
combustion control algorithms appears as a promising solution for attaining optimal combustion control in IC 
Engines. The pressure sensor durability, accuracy and price, along with increased demand for the processing 
power of Engine ECU, seems to be the main obstacles for putting these concept in IC engines on serial production 
line. This paper deals with the potentials of Artificial Neural Networks (ANN) and their application in combustion 
features extraction, based on the crankshaft angular speed measurements. High speed processing capabilities and 
acceptable accuracy of ANN make them good candidates to become a core component of the future combustion 
control algorithms. An radial basis function (RBF) ANN and a local linear Neuro-fuzzy  model (LLNFM) are 
compared in order to gain some conclusions on optimal network topology, best suited for job of extracting crucial 
combustion features on common ECU platforms. 
 
KEYWORDS: engine combustion analysis, neural networks, spark advance, crankshaft dynamics   

INTRODUCTION 

The dominant propulsion technology of the present is the internal combustion engine and it will be hardly possible 
to be completely replaced in the upcoming decades. Relying on fossil fuels IC Engines, in road transport, are 
responsible for a significant share in the of the world's CO2 emission of almost 20% [1]. The ever increasing energy 
demand followed by pollutant emission increase urges for more efficient powertrain solutions. The main focus of 
the research in the field of IC Engines is, more than ever, focused on its efficiency improvement and emission 
reduction toward fulfilment of CO2 targets already defined in regulatory frameworks worldwide [2]. 
 
The efficiency of the today's IC Engine is close to 80% of the thermodynamically ideal engine. Higher efficiencies 
are hardly achievable since the real engine process is influenced by unavoidable phenomena like heat losses, finite 
combustion duration, exhaust and blowdown losses, crevice effects, leakage and incomplete combustion [2]. 
Comprehensive study of the factors influencing the extraction of maximum useful work from the IC engine working 
cycle can be achieved through exergy (availability) analysis. A survey, done by Rakopoulos [4], on publications 
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concerning the application of the second-law of thermodynamics to IC engines, gives detailed insight on 
parameters and strategies which could lead to efficiency increase by minimising exergy destruction. Some of the 
factors, influencing the engine efficiency, are related to engine control parameters which leave some space for 
efficiency improvement by implementation of more sophisticated control algorithms.  
 
The spark advance is one of the key parameters in the SI engine performance. Phasing the start of combustion 
influences the combustion process itself and largely influences the amount of work which can be extracted from the 
working cycle. Maximum brake torque (MBT) can be achieved by optimally phasing the combustion process i.e. by 
setting the optimal spark advance angle. Bargende [3] showed that the optimal spark advance is closely related to 
the angular position of the 50% mass fraction burned (MFB50) i.e. that optimal spark advance sets the MFB50 to 8-
10° CA after TDC. Mostly supported by experimental work and numerous testing, this conclusion has a logical 
theoretical background. Beccari [4] gave detailed explanation for the optimal position of MFB50, relying on the 
analysis of the minimal entropy change during combustion. He concluded that the optimal phase of the combustion 
process i.e. combustion start angle depends mostly on the intensity of the heat and friction losses and the rate of 
the heat release (ROHR) curve symmetry.  
 
The concept of combustion indicator based spark advance control is explained in Figure 1. The figure shows an 
example of measured in-cylinder pressure and its numerical derivatives – ROHR and MFB, within the angle frame 
of the combustion process. The presented example shows a cycle where the combustion process needs to be 
retarded, since the MFB50 indicator is out of the wanted, optimal angular span (8-10º CA ATDC). Asymmetry of the 
ROHR curve, which is represented by its centroid position w.r.t. combustion duration midpoint, has an additional 
influence on the spark advance correction.  

 
Figure 1 An example of the bad positioned combustion process which needs to be retarded in order to improve the 

cycle brake thermal efficiency 
 
The relation between the MFB50 position and spark advance angle is not straightforward. By changing the start of 
combustion angle, thermodynamic circumstances within the combustion chamber are changing also, thus affecting 
the whole combustion process. That means that the phasing of the spark advance causes not only the change in 
ROHR curve angular position but its shape too. Therefore an advanced spark advance control system requires the 
feedback from the combustion process in order to maintain the highest achievable efficiency in real-time.   
 
Today's SI engine control ignition system is map based and driven in open loop. These maps are defined through 
the optimisation process of the engine control parameters. Although this calibration process is very sophisticated 
and advanced, this open-loop type of control is unable to deliver the full efficiency potential through the engine 
lifetime. This is mainly caused by various influences which cannot be counted for during map calibration phase.  
Modern concepts, of the spark advance control, need highly accurate feedback information from the combustion 
process in order to achieve optimal combustion efficiency. Therefore, they urge for some kind of sensor which will 
provide the information on some crucial combustion features through its indicators. A combustion indicator, like 
MFB50, can be easily estimated from measured in-cylinder pressure. Whereas straightforward in extracting 
combustion features, this method has a major drawback in the pressure sensor implementation costs and its 
durability.  
 
Alternative approaches are vastly investigated by researchers focusing on already available, common signals on SI 
engine. Among them, the angular speed and acceleration of the crankshaft has drawn far more attention because 
of its availability through a common engine speed measurement system. An angular speed of a crankshaft, which 
varies through a single engine cycle, is mainly formed by summing action of the gas torque   , originating from the 
in-cylinder gas pressure forces, and the mass torque   , caused by the oscillating parts of the engine. The 
information on the combustion process is contained in the gas torque and, consequently in the crankshaft angular 
speed. Although informative, the main obstacle in using the angular speed, as an effective combustion indicator 
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source, is the high nonlinear influence of the mass torque which can largely mask the information on the 
combustion process. 
 
The crankshaft is a complex and not an absolutely stiff object, subjected to highly variable load. This lead to 
torsional oscillations of the crankshaft segments and, depending on the angular speed sensor placement, 
measured signal can be heavily influenced by this phenomenon, also.  
 
This paper deals with the two step approach for obtaining the combustion indicator from the angular speed 
measurements. Relaying on relations between torques acting on the crankshaft, through the torque balance 
equation, first step transforms the angular acceleration to, so called, synthetic signal by freeing the original signal 
from mass torque influence. The second step is based on radial basis function ANN or local linear Neuro-fuzzy 
model (LLNFM) which uses this created synthetic signal as an input for a direct reconstruction of the MFB curve or 
MFB50 combustion indicator only. Thus, this method has potential to directly provide the closed loop spark 
advance control system with the MFB50 combustion indicator solely by measuring the angular speed of the 
crankshaft. Complete closed-loop control, with synthetic torque evaluation step, is presented in the Figure 2. 
 

      
Figure 2 Two-step concept of closed loop spark advance control implementing virtual neural network structure 

based MFB50 sensor 
  

SYNTHETIC TORQUE ESTIMATION 

Crankshaft angular acceleration is built up by summing action of several torques: the gas and mass torques (     
and    ), friction torque     and load torque    . The friction torque     originates from the friction forces within the 
engine and the load torque     acts as an external load opposing the effective torque generated by the engine. This 
torques are related through the torque balance equation, which in general, for single cylinder takes form: 
 

  ̈    ( )    (   ̇  ̈)    ( )    ( ) (1) 
 
where θ is the crank angle and J denotes the crankshaft's moment of inertia. Information on combustion process is 
nested in in-cylinder pressure which is part of the gas torque    : 
 

  ( )    ( )     
  

  
 (2) 

 
where   ( ) is the in-cylinder absolute pressure,    is the piston area and s denotes the piston displacement. 
The mass torque evaluation is often based on the analysis of the kinetic energy of crankshaft mechanism modelled 
as two point mass system: 
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  ̇  (3) 

 
where the   ( ) is varying inertia of oscillating mass    w.r.t. the crankshaft axis and    denotes the rotating mass 
on crankshaft side. The exact expressions for the varying inertia and the derivatives of the piston displacement can 
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be found in [5]. Nonlinearity, introduced by     into the equation (1) is one of the main obstacles in establishing the 
straightforward linear relationship between angular speed θ   and in-cylinder pressure   ( ). 
 
Since the mass torque      depends on design parameters of crankshaft mechanism it is quite predictive and can 
be calculated in advance. Relaying on this idea Moskwa suggested the method [6] in which the whole mass torque 
is replaced by the product of the constant moment of inertia and a new synthetic variable called synthetic angular 
acceleration. He used this method as a linearization technique for accessing the combustion information through 
measured angular acceleration. Therefore the term "synthetic", used in this paper, is inspired by the work of 
Moskwa and is an association on idea of eliminating the inertia effects from the measured angular speed signal. 
 
Schagerberg [7] analysed the crankshaft model complexity influence on the estimation of combustion features 
using torque balance equation. In general, the more complex crankshaft model provide better results but the proper 
decision on how complex the crankshaft model should be, in order to give a satisfactory estimation of combustion 
features is related to the crankshaft modal shapes analysis [8].  
 
 The model used in this paper, is a multibody (lumped mass) based and takes the following matrix form:    
 

    ̈     ̇        ( )    (   ̇  ̈)    ( )    ( ) (4) 
  
where J, C and K are the inertia, torsional damping and stiffness NL x NL symmetrical matrices, respectively. 
 

 
Figure 3 A torsional crankshaft lumped mass model of the four cylinder engine 

 
The values, underlined in the equation (4), are the vectors whose elements respond to NL individual lumped 
masses of the model. By assuming that the friction can be incorporated in damping loses, following variable can be 
defined: 
 

       ( )  ∑(   ̈      ̇            (   ̇  ̈))

 

 (5) 

 
This variable represents the estimate of the gas and the load torque sum and, knowing the parameters of the 
crankshaft model defined by eq. (4), can be calculated solely by means of measured crankshaft speed / 
acceleration (m* subscript in eq. (5)). The variable        contains complete information on combustion process. 
Since the variations of this variable are more influenced by the combustion process than load variation, this 
variable is a good candidate for combustion features estimation. The drawback of this approach and its prerequisite 
is the necessity for crankshaft model parameter identification. The next step, needed for estimating combustion 
feature from this variable, is the establishment of a model which is able to accurately correlate        and MFB50. 

ANN STRUCTURE AS A BASE FOR MFB50 VIRTUAL SENSOR 

The relationship between        values and combustion feature like MFB50 is highly nonlinear and depends on 
several complex processes mainly the heat release and heat transfer process. Nonlinearities are introduced by 
various, engine specific, parameters and circumstances derived from combustion chamber design, cylinder filling-
emptying processes, engine's working point, air-fuel ratio and so on. 
 
The neural network models are featured by capabilities to establish functional approximation of the highly nonlinear 
correlated data. In fact, their structure mimics the massively parallel-distributed processing virtue of a brain [9] by 
using multiple interconnected processing units. One of the goals of this work is to accomplish ANN structured 
models being capable to execute fast enough to be implemented in available engine ECUs. Therefore the focus is 
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put on the RBF ANNs and Neuro-fuzzy based models, since they are able to achieve same or even better 
performance than widely used MLP networks, but with more compact structures.  
 
Radial basis function networks, as shown on the Figure 4, have one hidden layer. The main processing units of this 
layer are the neurons with implemented activation function, which is often (as in this study) a Gaussian RBF. The 
RBF neural network is very well suited for multidimensional problems and is able to act as an MIMO (Multiple Input 
Multiple Output) system. The network k-th output is calculated as: 
 

     
       

 
‖    ‖

 

    
 

 (6) 

 
where     are the weighing coefficients,    denotes the centre of the j-th Gaussian function, and    its width. The 
learning method, used for the estimation of the RBF network weights and biases is based on the Orthogonal Least 
Squares algorithm (OLS).  
 

     
              

Figure 4 The radial basis function ANN structure [11] 
 
 
By drawing the fuzzy models in a neural network based structure, hybrid Neuro-fuzzy (NF) models can be created 
[12].The advantage of local linear NF models, in an approximation of a nonlinear function, is their capability to 
model complex nonlinearities by superposition of several very simple models - linear functions. The first step in 
defining LLNF model is partitioning of the input vector   and placing, locally valid, linear models. Validity of each 
linear model   ( ) is further defined by validation function   ( ).  
The output of the LLNFM is defined as: 
 

  ̂  ∑  ( )

 

   

   ( ) 

  ( )  ∑                    

 

   

 

(7) 

 

where M is the number of the local linear models and     are the parameters of the i-th linear submodel;       are 
the elements of the input vector  . The validity function, often used, is a normalised Gaussian function in the form: 
 

   (       )  
  

   
 
   

 

      ( 
 

 
 (∑ (

      

   

)

  

   

)) 

 

(8) 

 
where     is the Gaussian function centre coordinate and     individual standard deviation for the j-th input and i-th 
model partition (submodel). 
 
Structure of LLNF model, described by the equations (7) – (8), is shown in the Figure 5. The training algorithm 
used, named Lolimot (Local Linear Model Tree), is introduced by Nelles [12]. 
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 In order to take into account the parameters, which significantly influence the combustion process, cycle averaged 
pressure in the intake manifold  

  

 and the cycle averaged crankshaft speed     
 

 are added to the input vector 
which takes the form: 
 

 ( )             
( )           

( )
    

      

( )
   (9) 

 
where (i) designates each engine cycle. All three signals, comprising the input vector, are mapped into the range   
[-1 1], as usual in the ANN input data preparation process. 
 

      
Figure 5 The structure of the local linear Neuro-fuzzy model 

 
The RBF network is employed to form a MIMO system giving an output in the vector form with complete 
reconstruction of the mass fraction burned curve (eq. (6)). Since the LLNF model is simpler to employ as a MISO 
(Multiple Input Single Output) system, its output is defined as a single scalar - MFB50 combustion indicator: 
 

 ̂    
( )

        (10) 

MEASUREMENT SETUP 

The engine used, as an experimental object, is described in the Table 1. The identification of parameters of the 
crankshaft model requires measurement of the crankshaft angular speed. It was accomplished by means of optical 
incremental encoder (1º CA resolution), mounted at the free end of the crankshaft. Simultaneously, in-cylinder 
pressure was measured by means of piezoelectric, water cooled pressure sensor. Both signals, measured in 
angular domain, where crucial for preparing input (      ) and output (MFB50) training and test data sets for Neuro-
fuzzy virtual sensor model. 
 
 Anticipated accuracy of LLNFM is related to the amount and the quality of the data acquired for its training and 
testing. The engine was equipped with the laboratory prototype of a variable induction system (VIS). This system 
[14] had an ability to influence the intake port airflow, when turned on, which consequently affected the combustion 
process. For that reason, this system was used in order to almost double the number of engine's working points by 
simply turning that system on (VIS-on) or off (VIS-off).  
 

Table 1 The engine data 

Manufacturer DMB 
Type 4 cylinder inline 4 stroke SI; 2 valves per 

cylinder 
Firing sequence 1-3-4-2 
Bore [mm] 80.5  
Stroke [mm] 67.4 
Conrod length [mm] 128.5 
Piston pin offset [mm]  3.6 
Compression ratio [-] 9.03 
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Figure 6 The IC Engine test bed with the instrumentation and control systems  

 
Totally 141 engine's test points were recorded with 50 cycles each, which gave more than 7000 input-output pairs 
of data for neural network based model training and testing. Ought to mention that this number is not impressive in 
the world of IC engine neural models data gathering, but it was limited because of specific restrictions found on the 
engine used on a test bench. 

Data analysis and preparation 

Since the accuracy of measured signals has the key influence on usability of created models, full attention is paid 
for the correction of the measured angular speed due mechanical imperfections of measurement system [15], [16]. 
Measured in-cylinder pressure curves are corectly positioned in absolute pressure domen by means of methods 
described by Hohenberg [18] and Brunt in [19] which provided the pressure ofset values. 
 
The TDC position and the compression ratio, as well, are the factors which largely affect the accuracy of all in-
cylinder pressure derived conclusions. Correct TDC position and compression ratio are determined by the method 
described by Tazerout [20], which is  based on the T-S (entropy - temperature) diagram peak shape and symmetry 
analysis. Because of  its importance, determined TDC position is checked also by the thermodynamically based 
method, proposed by Tunestål [21] which confirmed a good agreement with the T-S shape & loop method (within 
0.1º CA).  
 
Correctly positioned in-cylinder pressure further provided the base for calculation of MFB curve and determination 
of MFB50 position for each of the measured engine cycles which will be used as targets in training and testing 
process of LLNFM. The calculation of the burn rate is closely related to the heat release and heat transfer process 
during combustion.The method proposed in [22] is simple, straightforward and an example of corect procedure for 
estimating the heat release curve. However, most of publications discussing the spark advance, MBT (Maximum 
Brake Torque) and MFB50 relations, as well as their conclusions, are based on Rassweiler & Whitrow  (R&W) 
method for the burn rate calculation [23]. Therefore, the method used for MFB curves evaluation will be also based 
on R&W method, but slightly improved by Shayler [24].  
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Figure 7 The map of the recorded stationary engine regimes with VIS on (above) and VIS off (below). The regimes, 

marked with rectangles, are separated for NN training (cca. 30%). The rest of the data is used for model testing 
(cca. 70%). 

 
 

      
Figure 8 Typical results of the MFB curve calculation (left) and its derivative (right); 50 consecutive cycles 
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MODEL PARAMETER IDENTIFICATION 

Rearrangement of the equation (4) and separation of terms in eq. (3) leads to second-order differential equation of 
motion of the crankshaft: 
 

  ( )   ̈      ̇        ( )    
   

(   ̇)    ( )    ( ) (11) 
 
where the varying inertia is the term multiplying  ̈ in (3) 
 

  ( )     ( )         (12) 
 
and the mass moment    

   
is the part of eq. (3), which depends on the angular speed:  

 

   
   

(   ̇)   
 

 
 
   ( )

  
  ̇  (13) 

 
Equation (11) can be further transformed to the system of two first-order equations. The in-line four cylinder 
crankshafts can be modelled as a system of 6 lumped masses interconnected with torsional damper and spring 
elements, which is shown in the Figure 3. That in start gives 16 unknown parameters which should be identified (5 
stiffness and 5 damping coefficients; 6 moments of inertia). By comparing the simulated ( ̂̈   ) and measured 
( ̈    ) angular acceleration error function   can be formulated: 
 

  (  )  [ ̈      ̈ 
̂

   
(  )]

 

 [ ̈      ̂̈   (  )]       (14) 
 
with    as a vector containing not yet identified parameters. This function can be successfully minimised by means 
of Levenberg-Marquardt algorithm. When the parameters of the crankshaft model are identified it is possible to 
apply eq. (5) and calculate the synthetic torque variable.  
 
Examples of calculated signals        are shown in the Figure 9 . The disturbances, which are noticeable on higher 
engine speed, especially on descending side of the signal, indicate that mass torque influence is not completely 
vanished. This is mainly a consequence of a fairly simple approach in the modelling of the friction torque. However, 
within the angular window in which combustion occurs, these anomalies are hardly visible. The focus of the 
analysing window is in 40° before and after TDC where the complete combustion mainly occurs. 
 
 

      

 
Figure 9 An examples of calculated Tsynth on 1800 and 2300 rpm on full (blue) and partial load (red) 
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The calculated        values are further prepared for the placement in the ANN / LLNF input vector by mapping its 
input range to the interval [-1…1]. In order to identify the optimal structure of the RBF network, a series of 
numerical tests is conducted by changing the maximum number of neurons used   {    }, and the spread 
parameter (spread        ), defining the width of Gaussian RBF (see eq. (6)). 
 
The key parameters, determining the performance of the LLNF model are the number of local linear models 
(neurons) M, and the Gaussian function width, given via parameter   . In order to find the optimal values of these 
parameters several numerical tests were conducted by varying number M         and              . The 
performance indicator used, was the standard deviation of MFB50 estimating error: 
 

       
 √

 

   
 ∑(             )

 

 (15) 

 
where N is the number of input vectors available for training / validation (number of engine cycles). Estimating error 
is defined as: 
 

                              (16) 
 
It should be noted that the commonly used performance indicator – mean squared error (MSE), have values which 
are, more or less, halved when compared to        

. Therefore, the        
 parameter measures the performance 

of the model more strictly. Moreover, it is statistically significant parameter which can be usefully incorporated in the 
overall model performance analysis.  
 
Testing the RBF network with the full length input vector containing        with 81 elements (1°CA resolution on [-
40…+40]°CA span around TDC), showed that this model is capable to reconstruct the MFB curve with a 
remarkable accuracy (see Figure 10). 
 
 

      
Figure 10 The comparison of the measured (R&W) and simulated MFB curve with RBF ANN (one of the engine 

cycles from the test point No. 27) 
 

With the reduction of the input vector size, created RBF models can be executed faster, reducing CPU load. 
Therefore some further numerical experiments were conducted with shortened variants of the input vector 
element        , by coarsening its angular resolution. For an example, if the angular resolution of the        is 
reduced to 6° CA , size of the  input vector   (eq. (9)), can be significantly reduced by employing 15 instead of 83 
elements (13 ×          

 +         
  +  

      

  ). Tests with, this shorter variant of the       , showed that the 
estimation of the MFB50 indicator, solely, can be achieved without significant reduction of estimation accuracy.  
 
Some of the numerical tests of RBF ANN models are presented in Table 2. These results indicate that the smaller 
number of data points in        can lead to better MFB50 estimation. The performance indicator        

 is 
calculated over test data set, by using a model trained on data set which comprises only 30% of the complete data 
set. This indicates that the models created have a good performance and generalization capabilities. The results of 
numerical tests on LLNF models are shown in Table 3. It is indicative that the LLNFM model can achieve very 
similar performance, compared to RBF ANN, but with smaller number of sub models, i.e. neurons.   
 
Cycle-by-cycle variations are common in SI engines. Pipitone [25] concluded, that combustion features, extracted 
in cycle-by-cycle manner and used as an input in a spark advance control system, can cause very large 
fluctuations of this control variable (±10°CA). In order to avoid this, and provide the spark advance control system 
with the more stable combustion indicator, its value should be averaged. 
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Table 2  The partial results of the numerical tests of different RBF ANN model configurations – values of        

 
on test data set (5000 cycles) in °CA 

       angular 
resolution [°CA] No. of neurons  Spread        

 

1 

14 4 0.356 

21 10 0.319 

43 8 0.411 

81 8 0.654 

6 
7 5 0.545 

14 8 0.374 

 
Table 3  The results of the numerical tests of different LLNF model configurations – values of        

 on test data 
set (5000 cycles) in °CA (         resolution is 6° CA) 

M↓   → 0.2 0.24 0.3 0.4 0.5 

2 0.400 0.405 0.414 0.445 0.447 

3 0.392 0.382 0.391 0.385 0.496 

4 0.369 0.357 0.419 0.353 0.576 

5 0.353 0.332 0.389 0.351 0.610 

6 0.581 0.340 0.452 0.379 0.590 

7 0.597 0.341 0.486 0.385 0.585 
 
Pipitone also showed that for the MFB50 indicator, the minimum number of engine cycles for stable indicator 
evaluation is strongly dependent on IMEP COV (Indicated mean effective pressure coefficient of variation), with the 
conclusion that the mean value of minimum number of cycles is around 14. Having this in mind, resulted output 
vector of both RBF and LLNF models is averaged by moving average filter (14 cycle width), and performance 
indicators are calculated over this smoothed MFB50 output.  
 
A variation of the error       , in estimating the MFB50 combustion indicator on the test data set, for some RBF 
ANN and LLNF models, is shown in the Figure 11 and Figure 12, respectively. It is clear that the performance of 
the both model structures used, suffers on some cycles with MFB50 estimation error exceeding more than 1°CA. 
Most of these cycles belong to the partial load regimes, driven with the leaner air-fuel mixture, where partial 
combustions and misfires are not uncommon. This implies that the air to fuel ratio (AFR), as an additional element 
in the neural network input vector  , could improve the model performance. 
 
Pipitone also concluded that acceptable variation of an estimated MFB50 indicator can be as high as ±1. 63°CA in 
order to maintain the spark advance within the ±1.8°CA, which consequently influences the efficiency loss with an 
acceptable mean of 0.2%. In order to evaluate the performance of the proposed models, variation of the estimated 
MFB50 values should be compared with that limits. By assuming that the almost whole span of estimated values is 
in the range of (2…3) ×        

, an acceptable variation of the MFB50 estimation should be: 
 

        
          (17) 

 
which means that the both  model structures can provide models with the required accuracy (see Table 2 and 
Table 3), and can be potentially used in closed loop spark advance control systems, even without discussing the 
above mentioned misfire or partial combustion problems. 
 
The execution time of the MFB50 virtual sensor model comprised of          calculation and MFB50 combustion 
indicator estimation is, along with its accuracy, a crucial feature which determines the possibility of the real-time in-
vehicle application. Therefore it is interesting to make some basic benchmark of these models on two distinctive 
CPUs: PC and automotive microcontroller (μC) CPU.        
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Figure 11        variation on the test data set [°CA], RBF ANN;          resolution is 6° CA  

 
 

      
Figure 12        variation on the test data set [°CA], LLNFM        , M=5;         resolution is 6° CA 

 
The most compact model, satisfying accuracy requirements defined by eq. (17), is LLNFM with 5 local linear 
models which expect input vector with 15 elements. The coefficients of this model are stored in 5×16 matrix of 
double precision numbers. The model execution, i.e. single MFB50 estimation on PC computer with an Intel I7-920 
(3.3 GHz) processor, takes roughly 7 μs (or less) per function call. This execution time is achieved with the model 
compiled and executed under the non-real-time PC Windows 7 OS.  
 
One of the typical engine ECU is often based on the Freescale MPC500 series μCs. Taken for an example, 
MPC565 has an CPU which the maximum running speed of 56 Mhz. When compared, via commonly used CPU 
speed unit (so called MIPSs), this μC should have more than 150 times slower execution speed. Quite opposite, 
when optimised and compiled for embedded application (Freescale CodeWarrior compiler), and executed in real-
time conditions, the execution speed of "benchmark" LLNF model was only twice slower than on PC, i.e. 13.6 μs. 
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This can be explained by the high utilisation of the μC CPU in a real-time task, which differs largely from the 
working conditions of the ordinary PC with non-real-time OS.   
 
The complete execution time of the proposed MFB50 virtual sensor includes the CPU time for         and 
calculated MFB50 averaging. Even if that time is 100 times larger than benchmarked values, the total execution 
time is acceptable for ECU μCs like MPC500, which are already in the category of obsolete units (compared to the 
capabilities of the actual Freescale MPC55xx series, or similar μCs from other manufacturers). 
    
Whereas the results showed are promising, further research could be focused on additional input vector size 
reduction which can lead to even more compact and faster models with the same or even improved performance.   
This input vector size reduction should rely on extraction of the most important information content from the            
variable. Some techniques for data size reduction, like one based on the Mutual Information concept, seems 
particularly promising and applicable [27].      

CONCLUSIONS 

In order to accomplish the optimal combustion efficiency, a modern engine control systems requires a closed loop 
spark advance control which relies on accurate information on combustion process. Whereas the in-cylinder 
pressure based methods are able to provide this information, an alternative approach, based solely on the 
crankshaft angular speed measurements and its processing, is suggested. The proposed sensing system 
estimates MFB50 combustion feature by calculating so called synthetic torque, and transforming it to MFB50 value 
through nonlinear estimator based on the artificially neural network structured models like RBF ANNs or LLNF 
models. 
 
The calculation of the synthetic torque is based on the identified parameters of a high fidelity calibrated dynamic 
model of the crankshaft. The synthetic torque signal contains high quality information on the combustion process 
with negligible mass torque influence thus simplifying the combustion process information extraction. The neural 
network input vector, based on the synthetic torque signal, the averaged cycle engine speed and the intake 
manifold pressure, provides enough information for the highest quality training of the RBF or LLNF models. 
 
Trained with the 30% and tested on 70 % of acquired experimental data, both RBF and LLNF models 
demonstrated very good performance in estimating the MFB50 with excellent generalization capabilities. 
Furthermore RBF models demonstrated a capability to estimate the shape of the whole MFB curve. The testing of 
the models showed that they are prone to generate increased errors in the MFB50 estimation on low load or idle 
engine regimes, mainly because of a misfire and partial combustion caused by leaner air-fuel mixture used. 
Despite this fact, designed LLNF and RBF models outperform the minimum allowable error variation and provide 
acceptable inputs for the closed-loop spark advance control system.  
 
Compared to RBF, LLNF models are able to provide the same performance with more compact structure and 
smaller number of neurons. Since this affects their execution speed, LLNF models are more appropriate for the 
implementation in the engine ECUs.  
 
The reduction of the input vector size, by reducing the angular resolution of the synthetic torque variable, enabled 
the compact design of the LLNF model with only 5 neurons. Further reduction of the neural network structure input 
vector, based on the information content extraction, could lead to the additional model size reduction and 
processing requirements which can be even more acceptable to the modern engine control units. 
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