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Beams 
 
The problem of torsion of the I-section beam is considered in this work, 
with emphasis on the variable cross section of the beam. Linear variation 
of height is concerned as most practical one for the design of cantilever 
beams. The solution for adopted cases of beams is obtained numerically, 
according to the given ordinary differential equation which deals with pure 
torsion along with warping torsion. The models are based on practical 
tailore-made beams. The comparison of results is done with uniform 
cantilever beam models which can be used as one view for stress check of 
cantilever beams subjected to bending with torsion. 
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1. INTRODUCTION 
 

The usage of variable cross section elements in 
structural systems is present since the beginning of the 
industrialization. In early stages, it was strongly 
connected with limits of production technology for steel 
beams [1], which forced engineers to tailor beams with 
existing ones. Nowadays, the variation in beam cross 
section is mostly related to the optimization due to 
reduction of the weight as the goal. 

The variation of the cross section can be in one or 
two directions (height, width or both) with linear or 
parabolic mode [2]. However, the most practical 
variation is linear variation of beam height which will 
be also addressed in this paper. This positive effect for 
beam carrying capacity due to bending is obvious and 
authors will not underline this furthermore. 

The basis for cross section variation will be carried 
out at I-section beam which is standard structural 
element with wide application in material handling 
machines. Although this section has allocation which is 
appropriate for bending over section major axis, it 
belongs to the class of "open" thin-walled sections 
which are highly sensitive to torsional effects. The one 
view to the optimization of uniform I-section beam due 
to torsional effects, considering minimum mass 
(minimum section area) as a goal, is given in [3,4]. 

The torsion of I-section beams can occure with loads 
such as inertia in horizontal direction or wind in outdoor 
structural systems. Faced with such loads, the designer 
needs to evaluate the magnitudes of the torsional effects 
and to consider the resistance of the member under the 
combined bending and torsion. Tipical design problem 
which complies with previous notes is design of outdoor 
foot mounted jib crane, Fig.1.  

In some circumstances, torsional effects (with 

significant torsional moment) leads to redesign the 
beam into "closed" structural hollow section. 

 The aim of this paper is to describe the problem of 
torsional effects on variable I-section cantilever beam 
subjected to operational torsional moments. Warping 
torsion on variable open section is probably unfamilliar 
to most structural engineers, due to scarce literature in 
that field of structural analysis.  

 
Figure 1. Foot-mounted jib crane 

Also, this paper gives some practical aspects for the 
designers of cantilever girders such as long span jib 
crane where this postulation needs to be performed due 
to safety check. 
 
2. WARPING TORSION 
 

Only brief overview is given here since the torsional 
performance of open structural section distinguishes St 
Venant torsional effects (pure torsion) and warping 
torsional effects. The interaction between these two 
types depends on parameters of the cross section, loads 
and element length. The classical formulation for open 
thin-walled sections subjected to torsion was developed 
by Vlasov [5]. 

The problem arises with complexity with non-
uniform sections as it will be addressed here. 

At any point in the span, the torsion is defined with 
the expression  
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 t wM M M� � � (1)

where Mt is St Venant torsional moment and Mw is 
warping moment. 
 These two values can be determined with 
formulation of deflected shape of the beam given by the 
following ordinary differential equation (ODF) 
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where: 
It - torsional constant, 
Iw - warping constant, 
G - shear modulus, 
E - modulus of elasticity and 
�=�(z) - rotation per unit length. 

The boundary conditions arise from the fact that the 
beam is fixed at one end, while it is free at the other, 
which leads to 

 (0) 0, �� ( ) 0L� � �� � � (3)

where L is beam length. 
 In the case of uniform cross sections, It and Iw have 
constant values and the solution of the differential 
equation (2) can be obtained analytically. On the other 
hand, for variable cross sections considered in this 
paper, where It = It(z) and Iw = Iw(z), shooting method 
[6] for solving this boundary value problem is applied. 
This method is implemented in the code written in 
Python programming language, using appropriate 
modules and functions from SciPy package, [7]. 

 
Figure 2. Linear variation of I-beam cross section 

The linear variation of height h=h(z) is assumed 
known with known values of section height at the 
clamped end, h1, and section height at the free end, h2 
(Fig. 2). The heights of I-beam cross section are 
measured between the centerlines of flanges. 

The torsional constant is given by 

 3 31
(2 ( ) )

3t f wI bt h z t� � � (4)

where: 
b - beam width, 
tf  - flange thickness and 
tw - web thickness. 

The warping constant can be determined with the 
normalized warping function (Fig. 3) as 

 3 21
( )

24w fI t b h z� � (5)

 
Figure 3. I-beam cross section warping function 

The torsional moment will be adopted per each case 
of beam model. Determination of title problem needs 
numerical analysis for specific beam models. 

 
3. CANTILEVER BEAM MODELS 

 
The solution of (2) will be obtained for several 

models of the cantilever beam. With respect to practical 
aspects of this work, the results will be obtained for 
cantilever beam models with the length of L=6 m. 
According to authors, this can be established as starting 
length where inclusion of linear variation of beam 
height can give benefits versus increased costs due to 
manufacturing process of such beam. 

The modulus are taken as G=8000 kN/cm2 and 
E=21000 kN/cm2, i.e. for construction steel material. 

The torsional moment will be adopted due to 
horizontal loads of cantilever beams. Regardless if 
concerned as horizontal inertial effects or wind load on 
the payload which is carried by bottom flange of the 
section, it is assumed that torsional moment originates 
from the horizontal force which is 10 % of vertical 
capacity of the cantilever beam. 

There are calculated 6 cases, with parameters given 
in Table 1. The parameters are relying on technical 
characteristics of IPE sections, where data correspond to 
"tailor" modus of sizes 160, 200, 240, 300, 400, 500, 
respectively to cases. 

 
Figure 4. Production modus for variaton of I-beam 

Parallel to these cases with variable sections, the 
solutions are obtained for uniform section beams where 
the height corresponds to h1 (which assures same 
bending resistance at the clamped end of cantilever 
beam). 
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Table 1. Beam models 

 h1 h2 b tf tw M 

CASE [cm] [cm] [cm] [cm] [cm] [kNcm] 

I 24.86 5.66 8.2 0.74 0.5 1 

II 31.15 7.15 10 0.85 0.56 2.4 

III 37.42 8.62 12 0.98 0.62 4.7 

IV 46.93 10.93 15 1.07 0.71 10.2 

V 62.65 14.65 18 1.35 0.86 24 

VI 78.40 18.40 20 1.6 1.02 44.5 

 
4. NUMERICAL RESULTS AND DISCUSSION 

 
The solution of (2) with boundary conditions (3) is 

obtained with the in-house software. The results are 
depicted with following charts, for each case. 

 
a) 

b)  
 

Figure 5. Case I 

a) 

 

 

b)  
 

 

Figure 6. Case II 

a)  
 

 

b)  
 

 

Figure 7. Case III 

a)  
 

 

b)  
 

 

Figure 8. Case IV 

a)  
 

b)  
 

Figure 9. Case V 
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a)  
 

 

b)  
 

 

Figure 10. Case VI 

There are obtained main torsional characteristics of 
the deflected beam, i.e. �(z) and �'(z), which can 
provide beam loads and stresses with known 
expressions [8]. It is obvious that values for �(z) and 
�'(z) are higher for the variable cross section which is 
expected, for each case. 

Only stresses due to torsion will be mentioned here. 
St Venant shear stresses (�) are proportional to �(z), thus 
maximum values occures at the free end of the 
cantilever beam. Restraint of warping produces 
longitudinal stresses and shear stresses. In practice, the 
warping shear stresses are small enough to be neglected. 
However, the longitudinal warping stresses (�w) are of 
importance and they are greatest at the flange tips with 
maximum values for clamped end of cantilever beams. 
Since this is the place where bending is also checked, 
their calculation is needed. Table 2 gives the summary 
of results for uniform and variable sections for each 
case. 

 
Table 2. Comparation of uniform vs. variable section 

 UNIFORM VARIABLE 
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CASE [kN/cm2] [kN/cm2] [%] [%] [%] 

I 0.23 0.44 19.53 33 10.2 

II 0.34 0.67 19.50 31 12.2 

III 0.44 0.83 19.09 28 15.7 

IV 0.61 1.18 19.51 32 24.3 

V 0.76 1.43 20.1 31 33.4 

VI 0.86 2.32 21.2 35 42.4 

One may see that usage of the variable cross section 
gives average 20% reduction of beam mass. This can 
save operational energy costs of the crane. 

The stresses in beams are higher than for uniform 
sections, mentioned as expected. The shear stresses are 
30 % bigger but their initial values are very small and 
can be neglected in stress check. However, the 
longitudinal warping stresses have values which are 
important for stress check. Their increasment goes up to 
42%. The backup for this can be the partial factor for 
resistance of beam which is smaller when inertial forces 
or wind forces are implemented in the calculation. 

 
5. CONCLUSION  
 

It is introduced warping torsion for cantilever beams 
with the variable section. Since numerous factors have 
the influence on postulated problem, no general remarks 
can be given at this stage. However, it is recommended 
to use variable sections as one way of optimization of 
crane structure which needs detailed calculation 
methods. Due to the complexity of the problem, the 
extension would be to postulate simplified assessment 
of warping effects in order to facilitate the design 
problem for practical usage.  
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