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Abstract: 
  

The paper considers motion and stability of a holonomic mechanical system in the vertical 
plane of an arbitrary force field. Differential equations of motion are created for a given system on 
the basis of general theorems of dynamics. Insights into generalized coordinates, Lagrange’s 
equations of the second kind, covariant and Hamilton’s equations are presented. Additionally to 
numerical procedures in the paper, a review of the theoretical foundations is performed. Also, the 
conditions of static equilibrium are solved numerically and by applying the intersection of the two 
curves. The paper introduced kinetic as well as the potential energy of the system. The spatial 
arrangement of equilibrium positions and behavior of the potential energy in the environment of 
the equilibrium positions is shown. Finally, the stability of motion for analysis is approached 
through Lagrange - Dirichlet theorem. Moreover, special attention is paid to examining effects 
responses of the disturbed and undisturbed system. Nonlinear and linearized equations are obtained 
in order to check the stability of the system for disturbed and undisturbed motion using Hurwitz 
stability criterion. Various procedures are verificated by drawing the same conclusions.  
 
Key words: holonomic system, applied mechanics, system stability, nonlinear systems, disturbed 
motion analysis 
 
 
1. Introduction  
 

Designing a complex system presents a challenge for the engineers from the point of view of 
good analysis of a mechanical system, which will predict the behavior of the plant in different fields 
of industries. Literature related to the issue of explicit analysis of analytical mechanics and system 
motion can be found in [1] - [4]; an overview of system stability problems is well explained in [5] 
- [8]. In [9] authors have expressed and emphasized issue of system performance analysis consisting 
of slide mechanisms, as well as the material point; this paper, using the example of a holonomic 
mechanical system with limited reactions of constraints, presents the procedure of creating the 
differential equations of motion based on the general theorems of dynamics. The objectives in the 
present paper are similar and include a review of different approaches to modelling a specific multi-
body system with given pseudo – codes for simulation and graphical representation of problem 
solutions. This paper also provides a procedure for solving constrained motion of a holonomic 
mechanical system in a plane with respect to its energy during motion with specified and given 
initial positions. 
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2. Description of a system and mathematical modelling  
 

A mechanical system, shown on the Figure 1, is composed of two material points 𝑀  and 𝑀 , 
as well as the slider 𝑀  which are tied with light rigid rods to each other. The fixed plane 
𝑂  coincides with the vertical plane of motion, where the axis 𝑂   is directed vertically upwards. 
In the configuration space, the position of the mechanical system in relation to the fixed coordinate 
system 𝑂  is defined by the set of Lagrangian coordinates (𝑞 , 𝑞 ) where 𝑞 = 𝜑 and 𝑞 = 𝜃 are 
absolute angles, shown in figure. The rods 𝑂𝑀  and 𝑂𝑀  are of equal length 𝑙, while the rod 𝑀 𝑀  
is of length 2𝑙. The spring with stiffness 𝑐 , whose length is, in the unstressed state, 𝑙 = 𝑂 𝑂, is 
tied to the material point 𝑀 , while at the other end it is tied to a fixed wall. Spring with stiffness 
𝑐 , whose length in the unstressed state 𝑙 = 𝑂 𝐴, has one end tied to material point 𝑀 , while at 
the other end it is connected to a fixed wall. Slider 𝑀 , which moves horizontally, in the direction  
which coincides with the direction of the 𝑂  axis, is connected by a damper, with a coefficient of 
proportionality 𝛽, while its second end is attached to a fixed wall. On material point 𝑀 , which is 
located at the end of the rod 𝑀 𝑀  acts force 𝐹 = 𝐹 𝑒 .  All necessary numerical data are given 
in the Table 1. 

 
 

Fig. 1. Holonomic mechanical system 
 

 
Parameters Value Name Parameters Value Name 

𝑚  10 kg 
Mass of material 

point 𝑀  
𝛽 121 N s / m 

Coefficient of 
proportionality  

𝑚  12 kg 
Mass of material 

point 𝑀  
𝐹  100 N 

Static force 

𝑚  8 kg 
Mass of slider - crank 

𝑀  
𝜑   4 π/13 

Initial angle 

𝑙 1.25 m length 𝜃  π / 7 Initial angle 

𝑐  
162.5 N 

/ m 
Spring stiffness 

�̇�  0 
Initial velocity 

𝑐  
366.67 
N / m 

Spring stiffness 
�̇�  0 

Initial velocity 

   α 0.7 Coefficient 

 
Table 1. Numerical values  

 
2.1 Constraints and Lagrange equations of the second kind 
 

The state of a mechanical system of 𝛮 material points 𝑀  (𝜈 = 1,2, … 𝛮), is determined in each 
moment 𝑡 by the position and velocities of all its points in the inertial reference system (IRS). If a 
fixed Cartesian system is introduced into an IRS, the state of the system is determined by variable 
scalar quantities: coordinates 𝑥 , 𝑦 , 𝑧  and velocity projections �̇� , �̇� , �̇� , which must satisfy the 
relations:  
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 𝑓 (𝑥 , 𝑦 , 𝑧 ,…, 𝑥 , 𝑦 , 𝑧 , �̇� , �̇� , �̇� ,…,  �̇� , �̇� , �̇� ; t ) = 0,   μ=1,2,..., m < 3N. (1) 

The motion of the considered system is limited by the following stationary holonomic constraints 
(1)-(5): 

There are four geometric constrains (p=4), with zero differential equations (q=0) and n = 2N - 
(p+q) = 2, where n is the number of degrees of freedom, N is the number of material points. Instead 
of independent Cartesian coordinates, independent generalized coordinates are introduced, which 
also determine the position of the mechanical system. Independent generalized coordinates 
represent a minimum number of independent geometric parameters that can unambiguously 
describe the motion of the considered mechanical system in space. Selected geometric parameters 
will be marked as 𝑞(𝑡). Position of the mechanical system from the Figure 1 is defined by the set 
of Lagrange coordinates (𝑞 , 𝑞 ), where 𝑞 = 𝜑 , and 𝑞 = 𝜃 are the absolute angles. The 
coordinates of all points can be expressed via generalized coordinates: 

 
Squared values of the velocities of the material points are determined by: 

 
Kinetic energy of a mechanical system is calculated as the sum of the kinetic energies of each 

slider and the material point. This can be represented by the equation: 

 𝑇 =
1

2
(𝑚 𝑉 + 𝑚 𝑉 + 𝑚 𝑉 ) (8) 

 
By substituting the calculated velocities (7) into (8), the kinetic energy of the whole mechanical 

system can be calculated, which is presented in the equation (9). In addition to kinetic energy, one 
of the system’s characteristics is its potential energy (10). When the total kinetic and potential 
energies of a mechanical system are calculated, it is possible to determine the coefficients of metric 
tensors 𝑎  and Christoffel symbols of the first kind 𝛤 , , 𝛼, 𝛽, 𝛾 = 1, … , 𝑛. 

 

 𝑇 =  
𝑙

2
𝑚 + 𝑚 + 𝑚 𝑠𝑖𝑛 𝜑 1 +

𝑐𝑜𝑠𝜑

4 − 𝑠𝑖𝑛 𝜑
�̇� + 𝑚 𝑙 sin(𝜑 + 𝜃) �̇��̇� +

𝑚 𝑙

2
(9) 

 

 𝛱 = 𝑚 𝑔𝑦 + 𝑚 𝑔𝑦 + 𝑚 𝑔𝑦 +
𝑐

2
(𝑥 + 𝑦 ) +

𝑐

2
(𝑥 + (𝑙 − 𝑦 ) ) (10) 

 𝑓 = 𝑥 + 𝑦 − 𝑙 = 0, (2) 

    𝑓 = (𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) − 𝑙 = 0, (3) 

 𝑓 = 𝑦 = 0, (4) 

 𝑓 = (𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) − 4𝑙 = 0, (5) 

 

𝑥 = 𝑙 𝑐𝑜𝑠𝜑,      𝑦 = 𝑙 𝑠𝑖𝑛𝜑,                            
𝑥 = 𝑙 𝑐𝑜𝑠𝜑 − 𝑙𝑠𝑖𝑛𝜃,  𝑦 = 𝑙 sin 𝜑 − 𝑙 cos 𝜃

𝑥 = 𝑙 𝑐𝑜𝑠𝜑 + 4 − 𝑠𝑖𝑛 𝜑 ,    𝑦 = 0        
 (6) 

 
𝑉 = 𝑙 �̇� , 𝑉 =  𝑙  �̇� + 2𝑙  𝑠𝑖𝑛(𝜑 + 𝜃) �̇��̇� + 𝑙  �̇� ,

𝑉 = 𝑙 𝑠𝑖𝑛 𝜑 (1 +
𝑐𝑜𝑠𝜑

4 − 𝑠𝑖𝑛 𝜑
)  �̇�                                 (7) 
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The last thing that needs to be determined in order to form Lagrangian equations of the second 
kind in covariant form are generalized forces 𝑄 . Generalized forces can be determined by the sum 
of potential and non-potential forces, so it is very easy to obtain Lagrange equations of the second 
kind in covariant form: 

 
so the graphical representation of the generalized coordinates 𝑞 = 𝑞 (𝑡),   𝑖 = 1,2 … 𝑛 is presented 
in Figure 2. Also, the change in the position of the slider and material points is shown in Figure 3. 
From the Figure 3 it is seen that the value of the coordinate 𝑦  does not change over time, because 
slider 𝑀  moves only in horizontal line. For verification accuracy of the results, the equations of 
relations (2-5) from the first point of this problem are analysed on the Figure 4.  

 
 

 
Fig. 2. Graph of generalized coordinates over time 

 

 
 

 

𝑇 =
1

2
𝑎 �̇� + 𝑎 �̇��̇� +

1

2
𝑎 �̇�  

𝑎 = 𝑙 𝑚 + 𝑚 + 𝑚 𝑠𝑖𝑛 𝜑 1 +
𝑐𝑜𝑠𝜑

4 − 𝑠𝑖𝑛 𝜑
 

(11) 

𝑎 = 𝑎 = 𝑚 𝑙 𝑠𝑖𝑛(𝜑 + 𝜃) , 𝑎 = 𝑚 𝑙   

Г , = Г , = Г , = Г , = Г , = 0, Г , = Г , = 𝑚 𝑙 𝑐𝑜𝑠(𝜑 + 𝜃) 

Г , = −
1

(𝑠𝑖𝑛 𝜑 − 4)
𝑚 𝑙  𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 + 4 − 𝑠𝑖𝑛 𝜑 (−4 𝑐𝑜𝑠𝜑 + 𝑠𝑖𝑛𝜑) 4 − 𝑠𝑖𝑛 𝜑) (12) 

 𝑎 �̈� + 𝛤 , �̇� �̇� = 𝑄 ,   𝛼, 𝛽, 𝛾 = 1, … , 𝑛, (13) 
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Fig. 3. Graph of coordinates over time 

 

 
Fig. 4. Checking the constraints from (2) – (5) 

 
3. Generalized momenta and Hamiltonian mechanics  
 
Lagrange’s variables 𝑡; 𝑞 ;  �̇�  (𝛼 = 1, … , 𝑛) can easily be replaced by Canonical (Hamilton's) 
variables: 𝑡; 𝑞 ; 𝑝  (𝛼 = 1, … , 𝑛) which, also, completely characterize the state of the system. By 
introducing Hamilton's variables, Lagrange equations of the second kind, which make system of n 
second order differential equations for determining n functions 𝑞 = 𝑞 (𝑡), can be replaced by 
equivalent system of 2n first order differential equations for determining 2n functions of 𝑞 =
𝑞 (𝑡) , 𝑝 = 𝑝 (𝑡). Hamiltonian function H is a function of generalized coordinates, generalized 
momenta and time i.e. 𝐻 = 𝐻(𝑞 , … 𝑞 ; 𝑝 , … , 𝑝 ; 𝑡). Hence, differential equation of motion, under 
the action of nonconservative forces have the shape:  

 

where 𝑝 =
̇

,     𝛼 = 1, … , 𝑛 are generalized momenta and 𝑄  represents nonpotential 

generalized forces. For the scleronomic system the Hamiltonian function H, has the form as given 
in (15) (because kinetic energy does not explicit depend on time): 

 

with 𝑝 =
̇
 and 𝑝 = ̇  , generalized momenta. For the proposed system, Hamiltonian is 

given as (16). All numerical research and calculations were done in the Wolfram Mathematica 
program. Change of the generalized coordinates and positions of material points are same as in 
Figures  2 – 4, because the same solutions are obtained by applying two different methods: 
Hamiltonian and Lagrange equations of the second kind in the covariant form. Generalized 
momenta are presented in the Fig. 5. 
 

 �̇� =  
𝜕𝐻

𝜕𝑝
,  �̇� = − 

𝜕𝐻

𝜕𝑝
+ 𝑄 , 𝛼 = 1, … , 𝑛 (14) 

 𝐻 =  𝑎 𝑝 𝑝 + 𝛱, (15) 
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. 

 
Fig. 5. Graph of generalized momenta over time 

3. Stability of motion 
  

The stability of the non  disturbed system was analysed in two different ways. First one is 
considering the conservative mechanical system, which is under the influence only of the 
conservative force: 

 
and because of  the absence of non  conservative forces (17) becomes: 

 
Second method is uses Lagrange-Dirichlet theorem: 

 
  where ( )  stands for the equilibrium position. The potential energy around the equilibrium 

position corresponds to the homogeneous quadratic form with constant coefficients 𝑐 .  For the 
force of constant intensity 100N acts on the material point 𝑀 , the change of the potential energy 
and static equilibriums points were calculated. The both of the obtained constrains are same, so the 
both of the equilibrium points sets give the same angle positions. The results are also given in the 
following Table 2, numerically, and in the Figure 6 graphically (second case). Figure also shows 
the change of the potential energy with change of angles (first case). From both of the cases, there 
are four equilibrium positions (see Table 2). 

 
Angle Case 1 Case 2 Case 3 Case 4 

𝜑  0.68803 1.45058 - 1.35581 - 2.44693 
𝜃  - 2.91483 - 0.23257 - 2.52980 1.52262 

Table 2. Static equilibriums  

 

𝐻 =  826.82 − 147.10 𝑐𝑜𝑠𝜃 − 303.24 𝑠𝑖𝑛𝜑 −  253.91 𝑠𝑖𝑛(𝜃 + 𝜑) +  (𝑝  (−1.28 +

 0.32 𝑠𝑖𝑛 𝜑)  +  𝑝  (−2.43 +  0.03 𝑐𝑜𝑠2𝜑 +  0.05 𝑐𝑜𝑠4𝜑 −

0.43 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛 𝜑 4 − 𝑠𝑖𝑛 𝜑) + 𝑝  𝑝  (2.56 − 0.64 𝑠𝑖𝑛 𝜑) 𝑠𝑖𝑛(𝜃 + 𝜑) )/(−65 +

𝑐𝑜𝑠 4𝜑 −  24 𝑐𝑜𝑠 2(𝜃 + 𝜑) +  𝑠𝑖𝑛 𝜑 (−10 + 8 𝑠𝑖𝑛 𝜑) − 16 𝑐𝑜𝑠𝜑 4 − 𝑠𝑖𝑛 𝜑 −

12 𝑠𝑖𝑛 (𝜑 + 𝜃)  

(16) 

 0 = − 
𝜕𝛱

𝜕𝑞
+ 𝑄 , 𝛼 = 1, … , 𝑛 (17) 

 0 = − 
𝜕𝛱

𝜕𝑞
, 𝛼 = 1, … , 𝑛 (18) 

 𝛱 ≈
1

2
𝑐 𝑞 𝑞 , with: 𝑐 =

∂ 𝛱

∂𝑞 ∂𝑞
, 𝛼, 𝛽 = 1, … , 𝑛. (19) 
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The resulting static equilibrium conditions are in form of the two equations: 

 
The equilibrium position is stable, only when the quadratic form (19) is positive definite, 

which can be confirmed using Silvester’s criterion. According to Sylvester's criterion, for the 
Hermit matrix to be positively definite, it is necessary and sufficient for all its major minors to be 
positive [9].  

 

  
Fig. 6. Static equilibrium, positions of equilibrium points in space and Change of potential energy with 
change of the generalized coordinates 

 
Lagrange Dirichlet theorem is not the only way for determining stability. In control theory one 

of the most popular is Hurwitz criterion, with analysis of the characteristic polynomial, which are 
given in Table 4. 

 
Case Case 1 Case 2 Case 3 Case 4 

C =𝒄  −97.63 171.96
171.96 123.33

 554.30 238.27
238.27 410.22

 −97.63 171.96
171.96 123.33

 −492.81 −202.66
−202.67 −320.45

 

Postiion stability unstable stable unstable unstable 
Table 3. Static equilibriums 

 
Case Characteristic polynomial Stability 
Case 1 54.3907  − 36.6394 𝜆 + 0.13725𝜆 − 5.5703𝜆 − 𝜆  unstable 
Case 2 −284.85  − 145.864 𝜆 − 36.54𝜆 − 6.6671𝜆 − 𝜆  stable 
Case 3 54.3907  − 36.6394 𝜆 + 0.13725𝜆 − 5.5703𝜆 − 𝜆  unstable 
Case 4 −257.085 +19.3073 𝜆 + 59.192𝜆 − 1.12973𝜆 − 𝜆  unstable 

Table 4. Hurwitz criteria and polynomial 
 
A linear system has only one isolated equilibrium point and if it is stable all of the states will 

converge to this equilibrium. However, equations which describes this system are nonlinear and 
there is no sense in checking system’s stability, only the stability of the equilibriums. For example 
system which has two equilibrium points is being considered. This system can initially be in 
equilibrium number one, which is unstable. When the disturbance is applied, it can happen that the 
second equilibrium attracts trajectory and the state can converge in the second equilibrium [10]. As 
it can be seen from Table 4 Case 1 and Case 3 have the same characteristic polynomial, so their 
graphs are the same (Figure 7).  

 
 

 
−303.234 𝑐𝑜𝑠𝜑 − 253.906 𝑐𝑜𝑠(𝜃 + 𝜑) + 125  𝑠𝑖𝑛𝜑 = 0 

  
125 𝑐𝑜𝑠𝜃 − 253.906 𝑐𝑜𝑠(𝜃 + 𝜑) + 147.1  𝑠𝑖𝑛𝜃 = 0 

(20) 
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The disturbed equations of motion are: 

 
with: 𝒒 = (𝑞 , 𝑞 , … , 𝑞 ), �̇� = (�̇� , �̇� , … , �̇� ), and 𝑞 (𝑡) − 𝑞 (𝑡) = 𝜉 (𝑡), �̇� (𝑡) −

�̇� = 𝜂 (𝑡) are disturbances.  
 
 

 
Fig. 7. Case 1 and 3: Disturbed motion of unstable equilibrium point and plane with polynomial solutions 

 
     Disturbances are taken to be: 𝜉 = 0.1, 𝜉 = 0, 𝜂 = 0.1,  𝜂 = 0.  There is root in right half of 
the plane so this two equilibriums are not stable. After linearization equations of disturbed motion 
in the vicinity of the positions of static equilibrium points for all cases were calculated. Linearized 
equations were calculated and they differ greatly from the nonlinearized (Figure 8).  
 
 

 
Fig. 8. Case 1 and 3: Disturbed motion of unstable equilibrium point with linearized equations 

 
Many of the potential problems with modal testing only become apparent during the actual test. 

Frequently, it is not possible to predict such problems beforehand either because there is no 
analytical model or because the model of the structure is unrepresentative [11]. For holonomic 
system from this task solutions were relatively easily obtained. An example of the non-holonomic 
system was investigated in [12] and [13]. Many of the authors treated special classes of the systems, 
most frequently, linear systems in companion canonical form [14]. For stable equilibrium points 
norms of disturbed motion strives to zero. In both stability check give the same results. Only in 
case 2 norm of disturbed motion strives to zero – because it is only stable equilibrium point (Figures 
9 - 10). 

 
𝑞 = 𝑞 𝑡; 𝑡 , 𝒒 , �̇� , �̇� = �̇� 𝑡; 𝑡 , 𝒒 , �̇� ,      𝛼 = 1, … , 𝑛, 

(21) 
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Fig. 9. Case 2: Disturbed motion of stable equilibrium point and plane with polynomial solutions 

 
For the second, stable equilibrium point, case this motion can be seen in Figures 9 which 

represents both, disturbed motion in case of the nonlinear and linearized equations. The case 4 form 
Table 4 is analysed in Figures 10 and 11. Same conclusions are drawn – equilibrium is unstable 
and there are roots in right half of Re  j Im plane. Linearized figures are similar as the nonlinear 
one in Case 2. Investigation of a linear time-invariant discrete-time plant were done. 

 

 
Fig. 10. Case 4: Disturbed motion of unstable equilibrium point and plane with polynomial solutions 

 

 
Fig. 11. Case 43: Disturbed motion of unstable equilibrium point with linearized equations 

 
3. Conclusions  

 
In this article, using a model of holonomic mechanical system, the motion at specified initial 

condition is analyzed with different approaches: using Lagrange equations of the second kind and 
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Hamiltonian mechanics. The change of system’s coordinates, generalized coordinates, as well as 
the Hamiltonians momenta are obtained, so the system’s motion has been confirmed. The stable 
and unstable equilibrium points are determined and found to be at the minimum of the potential 
energy. After concluding that only one equilibrium position is stable, a check was made by 
introducing disturbances into the system. Disturbed motion all of the equilibrium points with 
nonlinear and linearized equations is presented. From the real – imaginary Re  j Im  plane with 
roots of the characteristic polynomial the same judgements as from the graphs of system’s motion 
are made.  
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