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The aim of this paper is to present effect of initial conditions on choice of optimal parameters in computer automatic 
control system of an selected actual plant. Considering is made in a parameter plane wherein the area of formerly 
guaranteed relative damping coefficient of all closed-loop poles is separated. A performance index is chosen to be sum of 
error squared (SSE), taking into account of arbitrary initial conditions. 

Experimental results obtained on coupled-tanks plant are provided. 
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1. INTRODUCTION 
Over 95 % of coexisting practical industrial 

applications use PID (or PI as a special case) control 
algorithms and thus the suitable PID control design is still 
very actual, especially for systems under some 
nonlinearities, perturbations, or time-variant behaviour. 
Without any doubts, the ultimately primary and 
fundamental requirement of all applications is the stability 
of closed control loop, [1]. 

For the continuous-time PID controllers, in many 
works collected in [2], the stability regions in the space of 
the gains of the PID controllers are determined. A nice and 
simple procedure is also given in [3] that requires less 
numerical computations. One procedure is presented in 
[4], where the result of the parameter space approach [5] is 
used to derive the stability domain of PID controllers. 

Nevertheless, PID controllers are very often 
implemented digitally using microprocessors [6]. Research 
on the stability of digital control system goes back to early 
1960’s, when stability of such system was investigated. In 
[7, 8] the results of [2] are generalized to the case of 
digital PID controllers. 

 The aim of this work is to show that integral 
criterion has different value when we take into account 
non-zero initial conditions from value of the same integral 
criterion at zero initial conditions. At the same time, and 
more important, optimal controller gains can have 
drastically different values when we take into account 
nonzero initial conditions from values that we get at zero 
initial conditions. 

In many papers, as in [9, 10, 11], are assumed zero 
initial conditions for calculation of actual system output. 
The past and the present of a dynamic system are 
contained in a initial conditions. That same initial 
conditions together with the external input fully determine 
the output of the system. Initial conditions cannot be 
chosen and they are, usually, totally unpredictable. 
Complete analysis of continious linear time invariant 
systems with nonzero initial conditions is presented in 
[12]. 

2. EXPERIMENTAL SETUP 
The Coupled Tanks plant is a “Two-Tank” module 

made up of a pump with a water basin and two tanks. The 

two tanks are built in the front panel such that flow from 
the first (i.e. upper) tank can flow, through an outlet orifice 
located at the bottom of the tank, into the second (i.e. 
lower) tank. Flow from the second tank flows into the 
main water basin. To name a few, practical industrial 
applications of such Coupled-Tank structure can be found 
in the processing system of petro-chemical, paper making, 
and/or water treatment plants, [13]. 

Two experiments will be performed. Goal in the 
first experiment will be to manage the level of water  in the 
second tank whereby the optimal controller parameters 

pK  and IK  will be derived at zero initial conditions. In a 
second experiment our aim is also to maintain a level of 
water in the second tank, only in that case the optimum 
parameters of the controller pK  and IK  will be obtained 
at nonzero initial conditions. While the optimal parameters 

pK  and IK  will be different in first and second 
experiment, both experiments will be conducted with the 
same nonzero initial conditions. 

 
Figure 1: The Coupled Tanks plant 
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3. MATHEMATICAL MODELING 
In order to obtain the mathematical model of 

Coupled-Tank system it is necessary to bring to mind that 
the pump feeds into tank 1 and that tank 2 is not 
considered. Thus, the input to the process is the voltage to 
the pump pV  and its output is the water level in tank 1, 

1H  (i.e. top tank). The purpose of the present modelling 
stage is to assure us with the system’s open-loop transfer 
function  1W z  and  2W z  which in turn will be used to 
design an appropriate level controller. In obtaining the 
tank 1 equation of motion the mass balance principle can 
be applied to the water level in tank 1, i.e. 

 1
1 1 1

d
dt i o
HA Q Q
t
  , (1) 

where 1tA is the area of tank 1 while 1iQ  and  1oQ  are the 
inflow rate and outflow rate, respectively. The volumetric 
inflow rate to tank 1 is supposed to be directly 
proportional to the applied pump voltage, such that 
 1i pQ KV . (2) 

Applying Bernoulli’s equation for small orifices, 
the outflow velocity from tank 1, 1oV , can be expressed by 
the succeeding relationship 
 1 12oV gH . (3) 

In order to design and implement a linear level 
controller for the tank 1 system, the open-loop Laplace 
transfer function should be obtained. Nevertheless, by 
definition, such a transfer function can only express the 
system’s dynamics from a linear differential equation. 
Because of that, the nonlinear equation of motion of tank 1 
should be linearized around a nominal point of operation. 
By definition, static equilibrium at a nominal operating 
point  1,pnom nomV H  is presented by the tank 1 level being 

at a constant position 1nomH  due to a constant water flow 
generated by constant pump voltage pnomV . In the case of 
the water level in tank 1, the operating range corresponds 
to small deviations heights, 1h , and small deviations 
voltages, pv , from the desired nominal point 

 1,pnom nomV H . Therefore,  1h  and pv  can be expressed as 
shown below 
 p p pnomv V V  , (4) 
 1 1 1nomh H H  . (5) 

The derived linearized equation of motion should 
be a function of the system’s small deviations about its 
nominal point  1,pnom nomV H . After linearization we get 

    
 

1 1
1

1 1
dc

p

H s K
W s

V s s
 


, (6) 

where 1dcK  and 1  are tank 1’s gain and time constant, 
respectively. Expression (6) represents tank 1’s voltage-to-
level 1 transfer function. 

The water level equation of motion in tank 2 still 
needs to be obtained. The input to the tank 2 process is the 
water level, 1H , in tank 1 (generating the outflow feeding 
tank 2) and its output variable is the water level, 2H , in 
tank 2 (i.e. bottom tank). The obtained equation of motion 

should be a function of the system’s input and output, as 
previously defined.  

By implementing a similar procedure by which 
we obtain tank 1’s transfer function, now we get 

    
 

2 2
2

1 2 1
dcH s K

W s
H s s

 


, (7) 

where 2dcK  and 2  are tank 2’s gain and time constant, 
respectively. Expression (7) represents tank 2’s level 1-to-
level 2 transfer function. 
 Discretization of continuous time system is 
showed on figure 2. 

 
Figure 2: s-block diagram of discrete system 

Zero-order hold assumes the control inputs are 
piecewise constant over the sampling period T . Applying 
zero-order hold method for finding z-transform of plant’s 
s-transfer function we get following results 

   2
1

1

cW z
z c




, (8) 

and 

   4
2

3

cW z
z c




, (9) 

where 1c , 2c , 3c  and 4c  are corresponding real constants.  
Model verification of first tank discrete model is showed 
on figure 3. 
 

 
Figure 3: Verification of first tank discrete model 

The transfer function of whole process is obtained by 
following relationship 
      1 2pW z W z W z . (10) 

Verification of whole plant’s discrete transfer 
function model is showed on figure 4. 

Transfer function of discrete PI controller is 
obtained by using trapezoid rule 

  
 2 T T 2

2 2
p I I p

c

K K z K K
W z

z

  



, (11) 
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Figure 4: Verification of coupled tanks discrete model 

where pK  and IK  are constants of proportional and 
integral gain, while T is the sampling period. Now we 
have z-block diagram of the same system. 
 

 
Figure 5: z-block diagram of discrete system 

Transfer function of system showed on figure 5 is equal to 

 
( ) ( )

( )
1 ( ) ( )

c p

c p

W z W z
W z

W z W z



, (12) 

and this transfer function is used from now on.  
4. RELATIVE STABILITY 

 In the design of sampled-data control system the 
characteristic polynomial have parameter dependent 
coefficients, and  it is essential to determine the ranges of 
parameter values which ensure the system relative 
stability. Sampled-data control systems can be analyzed in 
both the s  and z  planes. Siljak [14] proposed the 
following procedure for the determination of the 
parameters   and   which are actually in our case pK  
and IK , respectively. 

If the analysis is to be carried out in the s  plane, 
the characteristic equation is given as 

  T T

0
0

n
s ks

k
k

f e a e


  , (13) 

where  ka   0,1,...,k n  are real coefficients. In order to 
discuss sampled-data systems in the z  plane, it is essential 
to introduce the substitution 
 Tsz e , (14) 
and rewrite (13) as  

  
0

0
n

k
k

k
f z a z



  . (15) 

By substituting 
 21z z z zz j      , (16) 
into (15), (15) can be rewritten as following two equations 

  
0

0
n

k
k z k z

k
a T 



 , (17) 

  
0

0
n

k
k z k z

k
a U 



 , (18) 

where  k zT   and  k zU   are the Chebyshev functions of 
the first and the second kinds, respectively. The argument 
of these functions is denoted by z  0 1z  . By using 
the relation 
      1k z z k z k zT U U     , (19) 
(17) and (18) can be further rewritten as 

  1
0

0
n

k
k z k z

k
a U 



  , (20) 

  
0

0
n

k
k z k z

k
a U 



 . (21) 

Equations (20), (21) have an advantage over 
equations (17), (18) in that they use only one kind of the 
Chebyshev functions and the design procedure is much 
easier.  

Now, we consider the case when the coefficients 
ka   0,1,...,k n  are linear functions of system 

parameters   and   
 k k k ka b c d    . (22) 
Equations (20), (21) may be written in the form 
      1 1 1, , , 0z z z z z zB C D          , (23) 

      2 2 2, , , 0z z z z z zB C D          , (24) 
where 

  1 1
0

n
k

k z k z
k

B b U 


  , (25) 

  2
0

n
k

k z k z
k

B b U 


 , (26) 

  1 1
0

n
k

k z k z
k

C c U 


  , (27) 

  2
0

n
k

k z k z
k

C c U 


 , (28) 

  1 1
0

n
k

k z k z
k

D d U 


  , (29) 

  2
0

n
k

k z k z
k

D d U 


 . (30) 

Equations (23), (24) may be solved for unknowns 
  and   which gives us following expressions for 
parameters   and   

 1 2 2 1

1 2 2 1

C D C D
B C B C







, (31) 

 2 1 1 2

1 2 2 1

B D B D
B C B C







. (32) 

Because attention is primary focused on the 
relative damping coefficient  , or the undamped (natural) 
frequency n , it is important to replace the complex 
variable s  in (13) with following expression 

 21n ns j      . (33) 
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Then from (14), (15), (16) and (33) z  and z  
may be expressed as follows 
 Tn

z e   , (34) 

 2cos T 1z n    . (35) 
Substituting (34), (35) into (25)-(30), gives us 

following expressions 

  T 2
1 1

0
cos T 1n

n
k

k k n
k

B b e U   




   , (36) 

  T 2
2

0
cos T 1n

n
k

k k n
k

B b e U   



  , (37) 

  T 2
1 1

0
cos T 1n

n
k

k k n
k

C c e U   




   , (38) 

  T 2
2

0
cos T 1n

n
k

k k n
k

C c e U   



  , (39) 

  T 2
1 1

0
cos T 1n

n
k

k k n
k

D d e U   




   , (40) 

  T 2
2

0
cos T 1n

n
k

k k n
k

D d e U   



  . (41) 

If these equations are used in (31), (32)   and   
are expressed as functions of n  and  . Thus, (31) and 
(32) may represent in the parameter plane the loci of 
points corresponding to the roots with constant damping 
coefficient (  curve), with constant undamped (natural) 
frequency ( n  curve), or with constant settling time ( z  
curve), depending on which variable among  , n  and 

z  is considered constant. The loci of points 
corresponding to constant real roots, which represent the 
real-root boundaries in the parameter plane, are derived 
from the characteristic equation. If the z  plane is 
considered, the substitution 
 zz  , (42) 
in (13) yields the real-root boundary as  

 
0 0 0

0
n n n

k k k
k z k z k z

k k k
b c d    

  

     . (43) 

For a given z  this equation represents a straight 
line in the   plane which will be called z  line. A linear 
sampled-data control system is stable if there are no roots 
of the characteristic equation (13) outside the unit circle. 
To investigate the absolute stability in the parameter plane, 
it is necessary to map the unit circle onto the   plane by 
using (31), (32) and (43).  

If we take into consideration 1z  , that means 
that we wish all roots of characteristic equation to lie in 
unit circle. In that case radius is equal to one. When the 
radius is chosen small enough, the roots of characteristic 
equation are located close to the origin of the z-plane and 
in that case the control system behaves like a dead-beat 
control system, whose transient response settles down fast, 
[15].  

Applying all previous analysis we get region in 
parameter plane where system have damping coefficient 

0.7  or bigger, which is showed on figure 6. Denotation 

0.7 (3,0)  means that all three roots of characteristic 
equation (15) lie within unit circle in z plane. 

 

 
Figure 6: Region of relative stability 

5. SYSTEM OPTIMIZATION 
In general, the idea behind time domain 

optimization methods is to choose the PID controller 
parameters to minimize an integral cost functional, [16]. 

A design is performed on the basis of conditional 
optimization. The goal is to find a position of working 
point which assure minimum value of performance index 
and at the same time, relative stability to be satisfied. A 
position of working point in parameter plane determines 
relative stability and also minimal value of performance 
index in these cases.  

In general, it is requested for a system output 
change ( T)y k  to vary as little as possible from the change 
of the wanted output ( T)dy k  during a time interval.     
Integral square error may be expressed as function of the 
z-transform of quantity ( T) ( T) ( T)de k y k y k   depending 
on the means by which system is investigated 

 2

0 0
( T) ( T) ( T)

k k
I e k e k e k

 

 

   . (44) 

As we know, inverse z-transform may be found using 
following expression 

  1 11( T) ( ) ( ) d
2

k

C

e k E z E z z z
j

   �Z , (45) 

where C  is circle in z-plane. So, expression (44) becomes 

 1

0

1( T) ( ) d
2

k

k C

I e k E z z z
j






 � , (46) 

 1

0

1 ( ) ( T) d
2

k

kC

I E z e k z z
j






 � , (47) 

  1

0

1 ( ) ( T) d
2

k

kC

I E z e k z z
j


 



 � , (48) 

 1 ( )

0

1 ( ) ( T) z d
2

k

kC

I E z e k z z
j


  



 � , (49) 

By definition of z-transform we have 

 
0

( ) ( T) k

k
E z e k z






 . (50) 

In order to minimize integral cost functions (49), 
Parseval’s theorem can be invoked to express the time 
functions in terms of their z-transforms, [17]. 

 1 11 ( ) ( ) d
2 C

I E z E z z z
j

  � . (51) 

Taking into account Cauchy residue theorem a 
value of the preceding expression is determined by sum of 
integrand residues for its poles enclosed by the contour C . 
As parameters   and   are determined so that all poles 
of ( )W z  and ( )E z  lie in the unit circle of the plane z , it 
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means that no one pole of  1E z  is encircled by contour 
C , and then performance index can be calculated as 
follows 

 *
1 1

|
1
Res ( ) ( )

r

n

z z
r

I E z E z z 




    , (52) 

where *
rz  is root from 1 ( )z E z . It means calculation of 

integral along the contour C  is substituted to calculation 
of integrand residue in its poles enclosed by this contour. 
Residues in complex poles of some rational function with 
real coefficients appear in conjugate-complex pairs. After 
summation of these residues  their imaginary parts annul 
and real parts only remain. It is phisicaly clear as sum of 
residues represents SSE, that performance index I  must 
be positive real quantity. 
 After shading decomposition curve 0.7  and 

calculating performance index I  for span of 
 0,0.068n   we find optimal values 0.1576pK  , 
0.005121IK   for zero initial conditions 1(0) 0h  , 

2 (0) 0h  . 
 When we want to take into account nonzero 
initial conditions 1(0) 0.003h   , 2 (0) 0.005h    then we 
do z-transform of system difference equation by using 
following well known formula 

  
1

0
( ) ( ) ( )

n
n n k

k
x k n z X z z x k z






   Z . (53) 

Now we find new ( )E z  in which exists nonzero 
initial conditions. Using this new ( )E z , and calculating 
performance index I  using (52) new optimal controller 
gain values are 0.1476pK  , 0.004921IK  . 

Figure 7 shows the experimental results obtained 
for the two sets of parameters pK  and IK  at the zero and 
nonzero initial conditions.  

 

 
Figure 7: Experimental results 

6. CONCLUSION 
In many papers choice of optimal controller gains 

was carried out only on the basis of effect of inputs on 
behaviour of dynamic system, while the effect of initial 
conditions were neglected. 

Effect of initial conditions on behaviour of every 
dynamic system must be taken into account in the process 
of finding optimal values for controller gains. 

This paper presented methods for design of 
standard discrete PI controller with two adjustable 
parameters pK  and IK  taking into account of arbitrary 
initial conditions. Values of controller gains pK  and IK  
which guarantee damping ratio of all closed loop poles to 
be greater or equal to 0.7 have been extracted. 

Experimental results obtained on coupled tanks 
plant clearly shows that when initial conditions of plant 
are not zero, controller parameters derived taking into 
consideration initial conditions will provide optimal 
behaviour of system which is not guaranteed with 
controller parameters obtained at the zero initial 
conditions. 
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