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The manufacturing industry frequently deals with the problem of gripping mechanism and their movement 
optimization. This paper presents an optimization methodology based on the whale optimization algorithm to design an 
optimal fuzzy PD controller of a two - link gripping mechanism (robot arm) as a part of mobile robot working cycle. The 
dynamical analysis of gripping mechanism investigates a coupling relation between the joint torques applied by the 
actuators and the position and acceleration of the robot arm. The proposed fuzzy controller optimizes the trajectory of the 
robot’s end effector. Additionally, a simulation study was done for the specific initial case and the trapezoidal velocity 
profile was generated. Based on the predefined acceleration, movement of the robot arm is shown to be smooth and without 
an abrupt braking. 
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1. INTRODUCTION

Robots take part in an important role in the current 
manufacturing industry. Per se, an essential feature of the 
Industry 4.0 are the autonomous production methods 
powered by robots that can complete tasks intelligently, 
with a focus on safety, flexibility, versatility, and 
collaboration [1]. 

Intelligent mobile robots can be used for many 
different purposes, for example, in the production process, 
one of them is internal transport – material handling. In 
that case we can consider an intelligent mobile robot as 
sort of a transportation machine – device. The main 
characteristic of all transportation machines is their 
working cycle (single or complex). Moreover, we will be 
considering intelligent mobile robot as „a single position 
machine“ with a discontinue working regime. Single-
position machine is a type of machine that will handle only 
one peace – product at a time and during handling it is on 
the machine the whole time 2 . 

Single working cycle of an intelligent mobile robot 
consists of: 1) Robot movement – from the starting point, 
to the position in front of the production machine, in reach 
of the gripping mechanism from where the transportation 
unit can be captured from the production machine; 2) 
Movement of the gripping mechanism - from starting 
(transport) position to the position needed for capturing the 
transportation unit; 3) Capturing of the transportation unit; 
4) Reverse movement of the gripping mechanism with the
transportation unit on it – from the position where the
transportation unit is captured all the way to the starting
(transport) position; 5) Reverse robot movement – from
the position in front of the production machine  to the
starting point. 6) Activity 2), 3) and 4) are repeated, with
the transportation unit releasing instead of capturing.
However, if reverse robot movement is not finished at the
same point i.e. starting point, then the working cycle is
called complex.

Generally, the robot’s motion in the environment is 
realized according to the predefined optimal path based on 
a defined criterion, and the current state of the robot is 
determined using preprocessed images obtained by a 
stereo vision system. In this paper, only a part of 

intelligent robot working cycle, which refers to movement 
of the gripping mechanism, will be considered and 
optimized.   

Many different techniques can be and are utilized to 
control the trajectory of the robot: traditional feedback 
controls (proportional integral derivative (PID) like 
controls), adaptive control, robust control, sliding mode 
control, optimal control, fuzzy control, and many others, 
as well as, a combinations of previous techniques. 

Fuzzy logic controller (FLC) is only one of the 
intelligent controllers and represents a widespread control 
technique since it has a satisfactory performance for 
nonlinear and complex systems. The advantages of a fuzzy 
PID controller for trajectory tracking control of a mobile 
robot, and its gripping mechanism are paramount in its 
rapidity, stability, anti-interference and tracking precision 
[3-5]. The fuzzy PID controller can be designed with a 
trial-and-error approach and the optimization can be done 
by using the cross-entropy method [6]. The varying fuzzy 
PID and proportional-derivative (PD) controllers tend to 
use either the Mamdani or Takagi-Sugeno type of the 
fuzzy systems [7]. Implementation of metaheuristic 
algorithms can deal with nonconvex, nonlinear, and 
multimodal problems subjected to linear or nonlinear 
constraints with continuous or discrete decision variables 
as global optimization algorithms. Differential evolution 
and genetic algorithms have been utilized to conduct the 
optimum design of a fuzzy controller for mobile robot 
trajectory tracking [8-10]. A 2 DOF planar robot was 
controlled for a given trajectory where the parameters of 
Mamdani type FLC were tuned with the particle swarm 
optimization [11]. The genetic algorithm is applied to 
improve the performance of the PID controller in terms of 
control precision and speed of convergence in paper [13]. 
A fuzzy sliding mode tracking controller for robot 
manipulators with uncertainty in the kinematic and 
dynamic models is designed and analyzed in paper [14]. 
Further, a sliding mode controller, an adaptive fuzzy 
approximator, is designed in such way that it controls the 
position tracking of a robot manipulator with two degrees 
of freedom. Initially, by utilizing an inverse dynamic 
method, it reduces the uncertainties bound and finally, 

C.1



Proceedings of X International Conference “Heavy Machinery-HM 2021”, Vrnjačka Banja, 23– 25 June 2021 

R. Jovanović, U. Bugarić, L. Laban, M. Vesović

sliding mode control eliminates the influence of the 
remaining uncertainties in closed-loop system stability 
[15]. In another paper a multiple-input multiple-output 
(MIMO) fuzzy logic unit was applied to the robot to track 
the desired trajectory with high accuracy. Moreover, in 
order to assess the performance of the proposed MIMO 
fuzzy sliding mode controller in the presence of parameter 
variations and external disturbances, a sudden load 
variation and noise were introduced to the robot system 
[16]. Feedback linearization controller is used to compute 
the required arm torque using the nonlinear feedback 
control law for a robotic manipulator with three degree of 
freedom. In addition, when all dynamic and physical 
parameters are known the FLC works remarkably, but 
given that a large amount of systems have uncertainties 
and the fuzzy FLC can reduce this kind of limitation [17]. 
However, various different approaches are included when 
combating the problem of the robotic arm, including the 
new methods using the neuro-fuzzy approach to estimate 
system uncertainties in paper [18]. 

The main goal of this paper is to design a fuzzy PD 
controller of a two-link gripping mechanism as a part of 
mobile robot working cycle. The whale optimization 
algorithm (WOA), as a novel optimization technique for 
solving optimization problems defined in [19], is used to 
determine the proper parameters of FLC in the trajectory 
tracking control of robot arm with two degrees of freedom 
(2-DOF). 

2. DYNAMICS OF A TWO-LINK
 GRIPPER 

Figure 1 shows the real object - mobile robot with 
gripping mechanism. As the desired task is to optimize the 
motion of this mechanism with two link and two degrees 
of freedom, it can be approximated with the scheme as 

Figure 1: Real object: mobile robot with gripping 
mechanism 

shown in Figure 2, where i , and im  are respectively the 
link angle, the length and the mass of the i-th link, 1, 2i . 
Without considering the friction and the disturbances, the 
dynamic model of a rigid two-link robot can be written as 
follows [20]:  

( ) ( , ) ( )M C Gq q q q q q τ (1) 

where q , q  and 2 1q are the robotic link position, the
velocity and the acceleration vector, respectively; 

2 1τ is the torque input vector; 2 2( )M q  is the
positive definite inertia matrix; 2 2( , )C q q  is the
centripetal Coriolis force matrix; and 2 1( )G q  is the
gravitational vector. 

Assuming that the centres of masses are in the 
middle of the levers, the elements ( )ijM q ( 1,2)i  of the 
inertia matrix ( )M q  are as follows [20]: 

2 2 2
11 1 1 2 2 2 1 2 1 2 2

2 2
12 21 2 2 2 1 2 2 22 2 2

1 1 cos
3 3

1 1 1cos ,   
3 2 3

M m l m l m l m l l q

M M m l m l l q M m l
(2) 

In the case of robot from Figure 2, q  is the vector of 

angular displacements 1  and 2 , 1 2
Tq . 

Figure 2: Scheme of the robotic gripper 

The elements ( , )ijC q q  ( , 1,2)i j  of the matrix
( , )C q q are presented as,

11 2 1 2 2 2

12 2 1 2 2 1 2

21 2 1 2 1 2 22

1 sin
2
1 sin
2
1 sin ,  0
2

C m l l q q

C m l l q q q
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Finally, the elements of the gravitational torque vector 
( )G q are given by: 

1 1 1 2 1 1 2 2 1 2

2 2 2 1 2

1 1cos cos
2 2

1 cos
2

G m l m l g q m l g q q

G m l g q q
(4) 

3. TRAJECTORY PLANING

In view of practical implementation, the 
trapezoidal velocity profile is one of the simplest motion 
profiles. It is composed of the ability to be accelerating to 
a constant velocity and decelerating to a rest state, and can 
therefore achieve fast motions. Its advantages are 
primarily that the time necessary to reach a constant speed 
is used and distributed so that the movement is smooth, 
without abrupt starting and stopping i.e. braking. The 
setting of this movement is actually done by setting the 
acceleration so that the speed decreases slightly until it 
reaches zero.  

According to the time, the profile divides into 
three regions and outputs: the maximum acceleration, 
deceleration, or zero value as acceleration. As shown in 
Figure 3, in the constant acceleration region the 
acceleration is the maximum positive value maxq  until the
velocity reaches the maximum value, maxq . After that the
constant velocity region where the acceleration and 
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velocity are zero, and the maximum value as well, 
respectively, the velocity decreases to a zero with the 
maximum deceleration, maxq .

Figure 3:The trapezoidal velocity profile: the 
acceleration, velocity and position profiles 

Using the following important parameters: the 
initial iq  and the final fq , the total duration of the 
movement fT  and the time provided for acceleration aT , 
the acceleration, velocity and position profiles can be 
described as: 

max
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0
( ) 0

a

a f a

f a f

q t T
q t T t T T

q T T t T
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Clearly, from the acceleration output, the velocity 
and position profiles are generated by integration 
operations, while taking into account the initial conditions.  

Maximum speed, maximum acceleration and the 
time provided for acceleration have the following 
relationship: 

max max aq q T (8) 

Using the following equation: 

maxf i a f aq q q T T T
(9) 

the only unrevealed variable (maxima acceleration maxq )
can be obtained:  

max
f i

a f a

q q
q

T T T
(10) 

In all previous expressions it is logically assumed 
that / 2a fT T , that is, the acceleration period is shorter 
than half of the total time. In the case of equality, the 
shape of the function becomes a triangle [21]. 

4. FUZZY LOGIC CONTROLLER

In the following section, we will be using the fuzzy 
control technique in order to design a fuzzy controller 
which is able to move a two link robot to track a desired 
trajectory. Consequentially, we will be designing two 
fuzzy controllers, one for each separate link. Some of the 
essential elements when designing a fuzzy controller 
include, first and foremost, defining the input and output 
variables, secondly the choice of fuzzification and 
defuzzification process, and most importantly determining 
the rule-base of the controller. 

In this paper, a proportional derivative (PD) type of 
FLC is utilized. The inputs of this type of controller are the 
error and the change in error, whilst the output is the 
control signal. Nevertheless, in the considered robot 
trajectory control, the input variables of the FLC are the 
error and error derivation of link position. The output 
variable of the fuzzy controller is the link control input, 
i.e. torque. All membership functions for the controller
inputs and outputs are defined on the common normalized 
interval [-1, 1]. For all of the membership functions we use 
symmetric triangular functions (except for the two 
membership functions at the ends, which are trapezoidal) 
with an equal base and 50% overlap with neighbouring 
membership functions as shown in Figure 4 and Figure 5. 

Figure 4: The input membership functions 

Figure 5: The output membership functions 
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Further, fuzzy controllers both of the links share a 
common membership function, where iNe  and iNe , for all

1, 2,...i represent the normalized error and the 
normalized derivative of the error, respectively. The 
normalized control signals are represented by iNu , for all

1, 2i  respectively, for the link 1 and link 2. 

Table 1: Fuzzy IF-THEN rules for the robot trajectory 
control 

Ne  NB NS Z PS PB 

NB NB NB NM NS Z 

NS NB NM NS Z PS 

Z NM NS Z PS PM 

PS NS Z PS PM PB 

PB Z PS PM PB PB 

In a standard fuzzy partition, each fuzzy set 
determines the value of the linguistic variable. The fuzzy 
linguistic variables NB, NM, NS, Z, PS, PM and PB 

represent the negative big, negative medium, negative 
small, zero, positive small, positive medium and positive 
big values. Hence, the fuzzy IF-THEN rules for the robot 
trajectory control are given in Table 1. 

In addition, the use of normalized domains 
requires a scale transformation, i.e. input normalization, 
which maps the physical values of the input variables into 
a normalized domain. Furthermore, output 
denormalization maps the normalized value of the control 
output variable into its respective physical domain. In 
stating the above, the relationships between scaling factors 
and the input and output variables are as follows: 

,  ,  ,  1,2
i i iiN e i iN de i i u iNe S e e S e u S u i  (11) 

where ie , ie and iu are error, the derivative error and
control input, respectively. Practically, the proposed FLCs 
are implemented in Matlab/Simulink, with the product 
inference engine and center average defuzzification 
method. Simulink model of the two link robot system with 
fuzzy control is shown in Figure 6. 

Figure 6:  Simulink model of the 2-DOF gripping mechanism with fuzzy control 

5. OPTIMIZATION OF FLC

5.1. Whale optimization algorithm 
The highly utilised and implemented WOA was 

first suggested by Seyedali Mirijalili and Andrew Lewis in 
their paper [19]. The WOA has proven to be outstanding at 
resolving a variety of modes, multimodal and  problems 
that are not linear. The foremost supremacies of this 
algorithm, and all metaheuristic algorithms in general, are 
that it has random distribution, which avoids getting stuck 
in the local minimum. The hunting method which they 
deeply rely on is the bubble-net feeding method. Using 
this method they dive deep, a couple of meters deep into 
the ocean and then start swimming upwards to the surface 
creating a bubbles in a spiral shape while encircling the 
prey. 

5.1.1. Encircling the prey 
Since the whales can recognize the location of the 

prey, the WOA algorithm assumes that the current best 
solution is the target prey, or very close to it. Stressing 
this, after the best search agent is defined the other search 

agents will try to update their position towards it. The 
mathematical model of encircling the prey is proposed 
using the following equations (where D  is the distance 
vector and X  is the vector utilized to update the position): 

* ( ) ( )t tD CX X (12) 
*( 1) ( )t tX X AD  (13) 

where t  indicates the current iteration, A  and C  are 
coefficient vectors, *X  is the position vector of the best 
solution obratined so far, X  is the position vector [19]. 

5.1.2. Exploitation phase: Hunting using the Bubble-net 
method 

Moreover when stating the mathematical 
modeling of the exploitation phase it is found that there are 
two diverse approaches to it; the shrinking encircling 
mechanism and spiral updating position. An universal 
assumption suggests that there is a 50% chance that the 
whale will chose between one of these two approaches, 
when updating the position. The first approach is related to 
decreasing linearly the value of a from 2  to 0  over the 

e

Ne
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course of iterations. Hence, the random values for A  are 
between 1,1 , where the new position of the agent is
located between the current best agent and the original 
position. The second approach is based on the calculations 
of the position of the prey and the whale. 

The mathematical model for these approaches is 
henceforward, depicted as the following equation: 

*

' *

( ) 0.5
( 1)

cos(2 ) ( ) 0.5bl

t if p
t

e l t if p
X AD

X
D X

 (14) 

where p  is a random number in 0,1 , b  is a constant for
defining the shape of the logarithmic spiral, l  is a random 
number in 1,1  and ' * ( ) ( )t tD X X  indicates the
distance of the i -th whale from the prey [19]. 

5.1.3. Exploitation phase: Search for the prey 
The whales search for the prey randomly 

according to the position of each others locations. The 
parameter A  is used to force the search agent to move far 
away from a reference whale. The position update here is 
based on the position of a randomly chosen search agent, 
instead of the best agent so far. The mechanism and 

1A  emphasizes the exploration and allows the WOA 
algorithm to perform a global search, henceforward it 
favors exploration and local optima avoidance. In other 
words the agent is diverging and moving away from the 
prey, unlike the converging and the best solution selection 
when using 1A  [19]. The mathematical model is as 
ensuing: 

randD CX X (15) 
( 1) randtX X AD  (16) 

5.2. Optimization of FLC using the whale optimization 
algorithm 

In a general sense, fuzzy controllers have a large 
number of parameters that can be adjusted in an attempt to 
gain an optimal dynamical response. Those parameters are 
the shape of the membership functions, the number of the 
linguistic variables for input and output values of the set of 
rules, scaling factors, etc. Moreover, in using the 
predetermined membership functions for the input and 
output values defined in section 4, and on Figure 4 and 
Figure 5, as well as, the set of rules (Table 1), it becomes 
obvious that the performance of the fuzzy PD controller 
depends on the input and output scaling factors, in turn the 
design of the fuzzy controller can be simply be attributed 
to the choice of the input/output scaling factors. 

In this paper we have been focused only on the 
tuning of the scaling factors, considering that is 
correspondent to the gains of the controller. Further, for 
the design of the optimal fuzzy PD controller the WOA 
optimization algorithm was used. Moreover, the 
mentioned parameters are all coded into one whale, i.e. 
one agent, that is presented with a vector which contains, 
in our case, six parameters. For the objective function we 
utilized the algebraic sum of ITAE (integral of time-
weighted absolute error) performance criterion of both 
links, as defined in the ensuing equation:  

1 2
0

( ) ( )J t e t e t dt (17) 

6. EXPERIMENTAL RESULTS

Finally, in order to demonstrate the methodology 
previously discussed, a 2-DOF robot, that is depicted in 
Figure 2, is used in order to perform the following 
simulation. The physical parameters for the gripping 
mechanism are 1 0.00799m kg, 2 0.00521m kg, 

1 0.05831l m and 2 0.0422l m.
The desired end-effector trajectory of the 2-DOF 

manipulator is specified according to trapezoidal velocity 
profile defined in Section 3. The initial position of the 
robotic gripper is determined by the mechanism itself. In 
our case, the initial link configuration is defined as 

0 1.3963 0.5236 Tq rad and lastly, the initial end-
effector position is 0 0.0373x m, 0 0.0898y m. 

The control task is to move that point from its 
initials to the finals coordinates defined by angles 

0.7854 0.7854 T
fq rad, and the end-effector 

position 0.0834fx m, 0.0412fy m. 
The time required to reach this position is set to be 

6fT s, the maximum acceleration maxq and the time
provided for acceleration aT  are calculated based on the 
equation (10) and the following, 

max1 max 22 2
m m2 s,  0.0763 ,  0.0330 

3 s s
f

a

T
T q q

In the proposed WOA algorithm the population is 
set to 10, while the total number of iterations is set to 30. 
Furthermore, in this optimization method, one agent 
represents one potential optimal fuzzy controller. All of 
the parameter values that were used in the implementation 
of the WOA were taken from the original paper [19]. The 
convergence curve of the objective function value is 
depicted in Figure 7. 

Figure 7: The convergence curve of the objective function 
value 

In addition, after the optimization the obtained 
parameters for the scaling factors are:  

1
1.8505eS , 

1
0.0784deS , 

1
0.9218uS  

2
1.5eS , 

2
0.0025deS , 

2
1.4385uS  
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In the following two pictures, we have shown the 
comparison between the real trajectory and the desired 
trajectory of the link 1 (Figure 8) and link 2 (Figure 9).  

Figure 8: A comparison between the desired and real 
trajectory of link 1 

There we can also observe that the real and desired 
trajectory curves both almost match, with very slight 
deviations, nearly neglectable. 

Figure 9: A comparison between the desired and real 
trajectory of link 2 

Moreover, the errors of position tracking for link 1 
and link 2, are given in Figure 10 and Figure 11, 
respectively. 

Figure 10: Position tracking  error of link 1 

Figure 11: Position tracking  error of link 2 

The error for the position tracking of the first link is less 
than 0.005 rad, while for the second link it is less than 
0.001rad. Finally, in Figure 12 and Figure 13 we have 
depicted the control torque of both link 1 and link 2. 

Figure 12: Control torque of link 1 

Figure 13: Control torque of link 2 

Furthermore, the robustness of the designed fuzzy 
controllers is tested, as follows. Hence, in order to test the 
robustness, the mass of the robotic arm of each link is 
increased three times, as in [11].  

The parameters of the fuzzy controller, which were 
optimized using the WOA algorithm, have remained 
unchanged, and comparisons of real and desired 
trajectories are given in Figure 14 and Figure 15. 
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Figure 14: A comparison between the desired and real 
trajectory of link 1 (increased mass of links three times) 

Figure 15: A comparison between the desired and real 
trajectory of link 2 (increased mass of links three times) 

In the pictures above we can clearly notice that even 
though we enlarged the mass of link 1 and link 2, the 
optimized algorithm works exceptionally well. 

In addition, the errors of position tracking for link 1 
and link 2, where the given links have a mass that has been 
increased three times in order to test the robustness, are 
given in Figure 16 and Figure 17, respectively. 

Figure 16: Position tracking error of link  1 (increased 
mass of links three times) 

Figure 17: Position tracking error of link  2 (increased 
mass of links three times) 

Here the error for the position tracking of the first link is 
about 0.015 rad, while for the second link it is about 
0.001rad. 

7. CONCLUSION

In this paper, fuzzy controllers were proposed for 
the trajectory tracking control of a two-link gripping 
mechanism as a part of mobile robot working cycle. The 
whale optimization algorithm was used to optimize the 
scaling factors of the proposed fuzzy PD controller. 
Namely, optimal input/output gains for the fuzzy PD 
controller were generated according to ITAE performance 
criterion. Numerical simulations were done to analyze the 
trajectory tracking performance of the designed controller. 
Moreover, the robustness of the controllers was tested in 
the case of the mass changes. The simulation results have 
shown that the proposed controller was capable of dealing 
with the nonlinearities of the robot and the changing of its 
parameters. One possible area of the future work can be 
simultaneous optimization of the scaling factors as well as 
parameters of input and output membership functions. 
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