AN INEQUALITY FOR THE LEBESGUE MEASURE

Ivan D. Arandelović

In this paper we present a new inequality for the LEBESGUE measure and give some of its applications.

If λ is the Lebesgue measure on the set of real numbers \mathbb{R} and $\left\{A_{n}\right\}$ sequences of LEBESGUE measurable sets in \mathbb{R}, then we have the following inequality: $\lambda\left(\underline{\lim } A_{n}\right) \leq \underline{\lim } \lambda\left(A_{n}\right)$. But for the inequality $\overline{\lim } \lambda\left(A_{n}\right) \leq \lambda\left(\overline{\lim } A_{n}\right)$ we must suppose that $\lambda\left(\cup_{i=n}^{\infty} A_{n}\right)<\infty$ for at least one value of n (see [1], p 40.). Example: for a family of intervals $I_{n}=[n, n+1) n=0,1, \ldots$ we have: $\varlimsup\left(A_{n}\right)=1$ and $\lambda\left(\overline{\lim } A_{n}\right)=0$.

But in the general case we have the following inequality:
Proposition. Let A be a measurable set of a positive measure and $\left\{x_{n}\right\}$ a bounded sequence of real numbers. Then

$$
\begin{equation*}
\lambda(A) \leq \lambda\left(\overline{\lim }\left(x_{n}+A\right)\right) \tag{1}
\end{equation*}
$$

Proof. Let $K \subseteq A$ be a compact set. From $\overline{\lim }\left(x_{n}+K\right) \subseteq \varlimsup\left(x_{n}+A\right)$ follows $\lambda\left(\overline{\lim }\left(x_{n}+K\right)\right) \leq \lambda\left(\overline{\lim }\left(x_{n}+A\right)\right)$. Now we have

$$
\begin{equation*}
\lambda(K)=\overline{\lim } \lambda\left(\left(x_{n}+K\right)\right) \leq \lambda\left(\overline{\lim }\left(x_{n}+K\right)\right) \leq \lambda\left(\overline{\lim }\left(x_{n}+A\right)\right) \tag{2}
\end{equation*}
$$

Since $\lambda(A)=\sup \{\lambda(K): K$ is the compact subset of $A\}$, (2) implies (1).
Corollary 1. (H. Steinhaus [2]) Let A be a Lebesgue measurable set of a positive measure. Then in A exist at least two points such that distance between them is a rational number.
Proof. Let $\left(q_{n}\right)$ be arbitrary bounded sequence of rational numbers, such that their member are different. From

$$
0<\lambda(A) \leq \lambda\left(\overline{\lim }\left(A+q_{n}\right)\right)
$$

it follows that the set $\overline{\lim }\left(A+q_{n}\right)$ is nonempty. So, there exists $p_{1}, p_{2} \in A$ and i, j such that $p_{1}+q_{i}=p_{2}+q_{j}$, which implies $\left|p_{1}-p_{2}\right|=\left|q_{i}-q_{j}\right|$.

As a further practical application of the inequality (1) we give the following short and simple proof of the famous Steinhaus' result.

Corollary 2. (H. Steinhaus [2]) Let $A \subseteq \mathbb{R}$ be a Lebesgue measurable set of a positive measure. Then its difference set $A-A=\left\{x \mid x=a_{1}-a_{2}, a_{1}, a_{2} \in A\right\}$ contains a neighborhood of zero.

Proof. Assume that the statement is wrong. Then there exists compact set of positive measure $K \subseteq A$ such that the difference set $K-K$ does not contain a neighborhood of zero. It follows that there exists convergent sequence $\left\{x_{n}\right\} \subseteq \mathbb{R}$ such that $\lim x_{n}=0$ and $\left\{x_{n}\right\} \cap(K-K)=\emptyset$. From

$$
0<\lambda(K) \leq \lambda\left(\overline{\lim }\left(K-x_{n}\right)\right)
$$

it follows that the set $\overline{\lim }\left(K-x_{n}\right)$ is nonempty which implies that there exists $t \in \mathbb{R}$ such that $\left\{x_{n}+t\right\} \in K$ for infinitely many values of n. From $\lim x_{n}=0$ it follows that $t \in K$, as K is a closed set. Thus we have that there exists infinite sequences $\left\{a_{j}\right\} \subseteq K$ and $\left\{x_{n_{j}}\right\} \subseteq\left\{x_{n}\right\}$ such that $x_{n_{j}}=a_{j}-t \in K-K$, which is a contradiction.

REFERENCES

1. P. Halmos: Measure theory. Van Nonstrand, Princeton 1950.
2. H. Steinhaus: Sur les distances des points de mesure positive. Fund. Math., 1 (1920), 93-104.
