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Abstract The paper considers the brachistochronic1

motion of a wheeled vehicle on a horizontal plane2

surface. The objective is to transfer the vehicle from3

the specified initial position with given initial kinetic4

energy to the specified terminal position in minimum5

time with conserved total mechanical energy of the6

vehicle. The problem is solved by applying Pontrya-7

gin’s maximum principle and singular optimal control8

theory. The projection of the reaction force of the hor-9

izontal plane applied on the front vehicle wheels onto10

the axis of the front vehicle axle is taken for a control11

variable. The cases of unbounded and bounded value12

of this projection are considered. The shooting method13

is used to solve the two-point boundary value prob-14

lem arising from Pontryagin’s maximum principle and15

singular optimal control theory.1 16

Keywords Brachistochronic motion · Nonholonomic17

system · Wheeled vehicle · Optimal control18

R. Radulović, A. Obradović, Z. Mitrović
Faculty of Mechanical Engineering, University of
Belgrade, Kraljice Marije 16, Belgrade 35 11120, Serbia

S. Šalinić (B)
Faculty of Mechanical and Civil Engineering in Kraljevo,
University of Kragujevac, Dositejeva 19, Kraljevo 36000,
Serbia
e-mail: salinic.s@ptt.rs

1 Introduction 19

The subject of this research paper is a wheeled vehicle 20

shown in Fig. 1. The motion of the vehicle is observed 21

with respect to the fixed reference frame Oξηζ whose 22

coordinate plane Oξη coincides with the horizontal 23

plane of the vehicle motion. The moving coordinate 24

frame Axyz is rigidly attached to the vehicle body, so 25

that the coordinate plane Axy coincides with the plane 26

Oξη where point A represents the mass center of the 27

front vehicle axle. 28

The unit vectors of the axes x , y, and z are
−→
i ,

−→
j , 29

and
−→
k , respectively. The axis Ax passes through the 30

mass center C of the vehicle body, and it is normal to 31

the rear vehicle axle. Masses of the vehicle body and the 32

front axle are M1 and M2, respectively. It is assumed 33

that masses of the wheels and the rear axle are negli- 34

gible. Let J1 and J2, respectively, be the moments of 35

inertia of the vehicle body and the front axle about its 36

central axes of inertia normal to the plane Axy, where 37

J1 ≫ J2. The vehicle configuration relative to the 38

frame Oξηζ is defined by a set of Lagrangian coor- 39

dinates (q1, q2, q3, q4), where q1 = ξB and q2 = ηB 40

are the Cartesian coordinates of the vehicle point B, 41

q3 = ϕ is the angle between the axes Oξ and Ax , 42

while q4 = θ represents the angle between the axis Ay 43

and the axis of the front axle. The point B coincides 44

with the middle of the rear axle. Further analysis refers 45

to the case when point A is prevented from moving 46

in the direction of the front axle, whereas point B is 47

prevented from moving in the direction of the rear axle. 48
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Fig. 1 A simplified model
of the vehicle and its front
axle

This means there is no side slipping of the front and rear49

wheels during the vehicle motion. Due to thus imposed50

restrictions on the vehicle motion, which can be writ-51

ten in the form of two ideal independent nonholonomic52

homogeneous constraints [1] :53

−ξ̇B sin ϕ + η̇B cos ϕ = 0, (1)54

−ξ̇A sin(ϕ + θ) + η̇A cos(ϕ + θ) = 0, (2)55

horizontal reactions of the horizontal plane Oξη occur56

at the contact points between the wheels and the plane.57

The net reaction forces acting on the front and rear axles58

read, respectively:59

−→
RA = −RA sin θ

−→
i + RA cos θ

−→
j ,

−→
RB = RB

−→
j .

(3)60

Note that as a consequence of the constraints imposed61

on the motion is that the velocity
−→
V of point B has the62

direction of the axis Ax , so the relations (1) and (2) can63

be also represented in the form:64

ξ̇B = V cos ϕ, η̇B = V sin ϕ, ϕ̇ =
V

l
tan θ, (4)65

where V = −→
V · −→

i and l = l1 + l2 is the dis-66

tance between the rear and front axles. As in [2] it67

is taken that, during the motion, the vehicle is acted68

on by a driving force
−→
F 1 = F1 (t)

−→
i at point B of69

the rear axle, as well as by an internal turning torque70

−→
L 1 = L1 (t)

−→
k acted about the vertical axis Az. Fur-71

ther, differential equations of motion of the considered72

vehicle will be generated using general theorems of 73

dynamics [3]: 74

d
−→
K

dt
= −→

F s
R,

d
−→
L B

dt
+ −→

V × −→
K = −→

M s
B, (5) 75

where
−→
K is the linear momentum of the vehicle,

−→
L B 76

is the angular momentum about point B of the vehicle, 77

−→
F s

R is the total external force, and
−→
M s

B is the total 78

moment of the external forces about point B. Note that 79

in [2] the Hamel–Boltzmann and Maggi equations are 80

used, while in [4] the Appell equations are chosen. 81

Projecting Eq. (5) on the axes of coordinate frame 82

Axyz yields: 83

M

[

V̇ −
(

l2 +
M2

M
l1

)

ω2
]

= F1 − RA sin θ, (6) 84

M

[

ωV +
(

l2 +
M2

M
l1

)

ω̇

]

= RA cos θ + RB, (7) 85

0 = N1 + N2 − Mg, (8) 86

J ∗ω̇ + J2θ̈ + M

(

l2 +
M2

M
l1

)

ωV = RAl cos θ, (9) 87

0 = M1gl2 + M2gl − N2l, (10) 88

where ω = ϕ̇ is the vehicle body angular velocity, 89

M = M1 + M2, J = J1 + J2, J ∗ = M1l2
2 + M2l2 + J 90

is the moment of inertia of the vehicle about the axis 91

Bζ , N1 and N2, respectively, are normal reactions of 92

the horizontal plane on the rear and front axles, g is the 93

gravity acceleration, and cos θ = V/
√

V 2 + l2ω2 (see 94

Fig. 1). Further, the differential equation of the front 95

axle rotation about the axis Az reads: 96
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The brachistochronic motion of a wheeled vehicle

J2
(

ω̇ + θ̈
)

= L1. (11)97

Now, based on Eqs. (6)–(11) it is possible to determine98

the reactions of nonholonomic constraints, as well as99

the driving force and the turning torque required to100

realize motion as follows:101

RA (t) =
1

l

√
V 2 + l2ω2

V

[

J ∗ω̇102

+ (Ml2 + M2l1) ωV + J2θ̈
]

, (12)103

RB (t) =
1

l

[

M1l1ωV + (M1l1l2 − J ) ω̇ − J2θ̈
]

, (13)104

F1 (t) = MV̇ +
ω

V

(

J ∗ω̇ + J2θ̈
)

, (14)105

L1 (t) = J2
(

ω̇ + θ̈
)

, (15)106

as well as the reactions N1 and N2:107

N1 =
M1l1g

l
, (16)108

N2 =
M1gl2

l
+ M2g. (17)109

From above equations it is obvious that the reactions110

N1 and N2 are constant during the vehicle motion.111

The kinetic energy of the vehicle reads:112

T =
1

2

(

MV 2 + J ∗ω2 + 2J2ωθ̇ + J2θ̇
2
)

. (18)113

Since the power of the active control forces equals zero,114

the law of conservation of total mechanical energy of115

the vehicle holds:116

dT

dt
= F1V + L1θ̇ = 0, (19)117

that is:118

�(V, ω) ≡ MV 2 + J ∗ω2 +2J2ωθ̇ + J2θ̇
2 −2T0 = 0,

(20)119

where T0 is the kinetic energy of the vehicle at the initial120

instant t0 = 0.121

Note that differential equations of the vehicle motion122

(6), (7), (9), and (11), as well as the reactions of non-123

holonomic constraints and the driving force and torque124

(12)–(15) are obtained in accordance with the con-125

straints (1) and (2). Taking this into account and the126

Coulomb friction laws, necessary dynamic conditions127

for the realization of motion in accordance with the con-128

straints (1) and (2) are that the magnitudes of interaction129

forces between the front and rear vehicle wheels and 130

the horizontal plane of vehicle motion do not exceed the 131

corresponding limit values of the Coulomb dry friction 132

forces [2]. In accordance with aforesaid, the following 133

inequalities [2]: 134

µ2(t)N2 = |RA| < F fr
2 = µN2, (21) 135

µ1(t)N1 = FB =
√

R2
B + F2

1 < F fr
1 = µN1, (22) 136

must hold where F fr
1 and F fr

2 are the dry friction forces 137

between the rear and front wheels and the horizontal 138

plane, respectively; µ1 and µ2, respectively, are laws of 139

change of minimum required value of the coefficients 140

of sliding friction between the rear and front wheels and 141

the plane of motion; µ is the coefficient of dry friction 142

between the front and rear wheels and the plane of 143

motion. Let us emphasize that in the conditions (22) it 144

has been taken into account that the interaction force 145

between the wheels on the rear axle and the horizontal 146

plane is determined by the vector sum of the driving 147

force
−→
F 1 and the reaction of nonholonomic constraint 148−→

R B (see [2]). The corresponding dynamic conditions 149

for the realization of motion in case of the absence of 150

the driving forces
−→
F 1 are derived in [4]. 151

The objective of this paper is to analyze the brachis- 152

tochronic motion of the described vehicle. In that 153

regard, the paper is based on the ideas and approaches 154

presented in references [5–7] . To the best of the 155

authors’ knowledge the results concerning the brachis- 156

tochronic motion of this vehicle type have not been 157

reported elsewhere before. For the problem of control- 158

ling the motion of this type of vehicle along a given 159

trajectory see [8,9]. In the next section, the formula- 160

tion of the brachistochrone problem for the considered 161

vehicle is given. 162

2 Optimal control problem formulation 163

In order to define state equations that describe the 164

motion of the considered system in the state space, it 165

is necessary first to express ω̇ and V̇ as a function of 166

defined state quantities and their time derivatives. The 167

relation J2 << J1 will be further employed to obtain a 168

simpler form of the state equations. Namely, by omit- 169

ting the third term in Eq. (12) and solving for ω̇, it is 170

obtained: 171

ω̇=
l

J ∗
V

√
V 2+l2ω2

RA−
ω

J ∗ (l2 M+l1 M2) V . (23) 172
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Further, omitting the terms 2J2ωθ̇ and J2θ̇
2 in Eq. (18)173

and performing the time derivative of such simplified174

expression of the kinetic energy yields:175

V̇ = −
lω

M
√

V 2 + l2ω2
RA +

ω2

M
(l2 M + l1 M2) , (24)176

where Eq. (23) is taken into account. Now, in accor-177

dance with Eqs. (4), (23), and (24), the requested state178

equations read:179

ξ̇B = V cos ϕ, η̇B =V sin ϕ, ϕ̇=ω, (25)180

ω̇ =
l

J ∗
V

√
V 2+l2ω2

u −
ω

J ∗ (l2 M+l1 M2) V, (26)181

V̇ = −
lω

M
√

V 2 + l2ω2
u +

ω2

M
(l2 M + l1 M2) , (27)182

where the control variable u is defined as u = RA.183

Note that the realization of the vehicle brachistochronic184

motion is achieved by both the active control force
−→
F 1185

and the active control torque
−→
L 1.186

Let the values of the state variables ξB , ηB , and ϕ and187

the initial kinetic energy T0 of the vehicle be specified188

at the beginning of motion on the manifold:189

t0 = 0, ξB(t0) = 0, ηB(t0) = 0, ϕ(t0) = 0, (28)190

MV 2(t0) + J ∗ω2(t0) − 2T0 = 0, (29)191

as well as the values of the state variables ξB , ηB , and ϕ192

at the terminal position of the vehicle on the manifold:193

t = tf , ξB(tf) = a, ηB(tf) = b, ϕ(tf) = ϕf , (30)194

where tf is free and represents the instant corresponding195

to the terminal state of the vehicle.196

For the vehicle, whose motion is described by197

the differential equations (25)–(27), the problem of198

brachistochronic motion consists of determining the199

optimal control u and the state variables ξB , ηB , and ϕ,200

so that the vehicle moves from the initial state on the201

manifold (28), (29) to the terminal state on the mani-202

fold (30), with conserved total mechanical energy (20),203

in minimum time tf . This can be expressed in terms of204

the condition that the functional205

I=
∫ tf

t0

dt, (31)206

on the interval [t0, tf ] has a minimum value.207

Here, it should be pointed out that the brachis- 208

tochrone problem and the minimum time optimal con- 209

trol problems (see e.g., [10–13]) are very similar. The 210

difference between these two types of optimal control 211

problems is that in the minimum time optimal con- 212

trol problems the request for the conservation of total 213

mechanical energy of the controlled mechanical system 214

is not imposed on control forces. 215

3 Optimal control in the case of unbounded 216

reaction forces 217

In order to solve the posed problem by Pontryagin’s 218

maximum principle [14,15], the Hamiltonian (Pontrya- 219

gin’s function) is formed: 220

H = λ0 + λξ V cos ϕ + ληV sin ϕ + λϕω 221

+ λω

[

l

J ∗
V

√
V 2+l2ω2

u−
ω

J ∗ (l2 M+l1 M2) V

]

222

+ λV

[

−
lω

M
√

V 2+l2ω2
u+

ω2

M
(l2 M+l1 M2)

]

, 223

(32) 224

where λ0 = const. ≤ 0, λξ , λη, λϕ , λω, and λV are 225

costates and where it can be taken that λ0 = −1 (see 226

[14]). For the needs of further considerations, a switch- 227

ing function H1 is defined as follows: 228

H1 =
∂ H

∂u
=

l
√

V 2 + l2ω2

(

λω

V

J ∗ − λV

ω

M

)

. (33) 229

Now, based on Eqs. (32) and (33), the Hamiltonian H 230

can be written in the form: 231

H = H0 + H1u, (34) 232

where 233

H0 = −1 + λξ V cos ϕ + ληV sin ϕ+λϕω 234

− λω (l2 M + l1 M2) V
ω

J ∗ 235

+ λV (l2 M + l1 M2)
ω2

M
. (35) 236

Such a case, when the Hamiltonian is linear in the con- 237

trol u, is known as the singular control case [15], where 238

the optimal control u cannot be explicitly determined 239

from the necessary optimality condition: 240

H1 = 0. (36) 241
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The brachistochronic motion of a wheeled vehicle

If the control u belongs to an open set, as is the case in242

this section, condition (36) represents the only require-243

ment for determining an optimal control. For the case244

of bounded constraint reaction, which is the subject of245

analysis in the next section, an optimal control repre-246

sents a combination of singular and bang-bang controls.247

Taking into account the boundary conditions (28)–248

(30) and the fact that time does not explicitly appear in249

the state equations (25)–(27), this problem of optimal250

control can be solved by directly applying Theorem 3251

(see [14]) that also involves the application of Theorem252

1 (see [14]).253

Based on Eq. (32), the corresponding costate equa-254

tions [14,15] read:255

λ̇ξ = 0, λ̇η = 0, (37)256

λ̇ϕ =
(

λξ sin ϕ − λη cos ϕ
)

V, (38)257

λ̇ω = −λϕ + λω

⎡

⎣(l2 M+l1 M2) V +
l3ωV

(

V 2+l2ω2
) 3

2

u

⎤

⎦

1

J∗258

+ λV

⎡

⎣

lV 2

(

V 2+l2ω2
) 3

2

u−2ω (l2 M+l1 M2)

⎤

⎦

1

M
,259

(39)260

λ̇V = −λξ cos ϕ − λη sin ϕ261

+ λω

⎡

⎣l2 M + l1 M2 −
l3ω

(

V 2 + l2ω2
) 3

2

u

⎤

⎦

ω

J∗262

− λV
lV

(

V 2 + l2ω2
) 3

2

u
ω

M
, (40)263

from where it follows that λξ = const. and λη =264

const. Further, the boundary conditions (28)–(30)265

imply the transversality conditions [14] at the initial266

and terminal positions, respectively, as follows:267

λω (0) MV (0) − λV (0) J ∗ω (0) = 0, (41)268

λω(tf) = 0, λV (tf)= 0. (42)269

Note that the transversality conditions (41) and (42)270

also satisfy the optimality condition (36). Since tf is271

free, in solving the system of Eqs. (25)–(27) and (37)–272

(40) the boundary and transversality conditions (28),273

(29), (30), (41), and (42) should be adjoined by the274

condition that the value of the Hamiltonian equals zero275

at any instant (see Theorem 1 [14]):276

H(t) = 0, (43)277

which, taking into account Eq. (42), leads to the fol- 278

lowing condition at the terminal instant tf : 279

−1 + λξ V (tf) cos ϕ(tf) + ληV (tf) sin ϕ(tf) 280

+ λϕ(tf)ω(tf)= 0. (44) 281

Now, the procedure of determining the optimal con- 282

trol u consists of further differentiating the switching 283

function H1 with respect to time in accordance with 284

Eqs. (25)–(27) and (37)–(40), as long as the control u 285

appears explicitly. For this purpose, the Poisson bracket 286

formalism is employed [17] as follows: 287

Ḣ1 = {H1, H} = {H1, H0} + {H1, H1}u = 0. (45) 288

Based on Eq. (36) and the fact that in the case of a 289

singular control along an optimal state-space trajectory 290

the following relation holds (see [17]): 291

{H1, H1} = 0, (46) 292

it is obtained that: 293

{H1, H0} = 0. (47) 294

Further differentiating Eq. (45) with respect to time 295

yields: 296

Ḧ1 = {{H1, H0}, H0} + {{H1, H0}, H1}u = 0. (48) 297

Now, it is possible to determine the first-order singular 298

control in the form: 299

u = −
{{H1, H0}, H0}
{{H1, H0}, H1}

. (49) 300

If 301

{{H1, H0}, H1} = 0, (50) 302

it is necessary to continue the differentiating procedure 303

of the expression (48). The Kelley necessary optimality 304

condition (also known as the generalized Legendre– 305

Clebsch condition) for singular control of the first order 306

[15,18] can be written by means of the Poisson brackets 307

[17] as follows: 308

{{H1, H0}, H1} > 0. (51) 309
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Now, in accordance with Eqs. (33) and (36), it is310

obtained that:311

λω =
J ∗ω

MV
λV . (52)312

Based on Eqs. (20), (35), (36), (43), (47), and (52) one313

has that314

λϕ =
J ∗ω

2T0
, V =

2T0

M

(

λξ cos ϕ+λη sin ϕ
)

, (53)315

from where, based on the initial state of the system316

(28) and (29), the initial velocity of point B can be317

determined as:318

V0 =
2T0

M
λξ . (54)319

Finally, based on Eqs. (33), (35), (49), (52), and (53),320

the singular control of the first order takes the form:321

u =
√

V 2 + l2ω2

l

[

2T0
(

λξ sin ϕ − λη cos ϕ
)

322

+ω (l2 M + l1 M2)] , (55)323

while the Kelley optimality condition (51) becomes:324

{{H1, H0}, H1} =
l2

J ∗M
(

V 2 + l2ω2
) > 0. (56)325

It can be deduced from Eq. (56) that the Kelley opti-326

mality condition is satisfied for ∀t ∈ [t0, tf ]. For the327

needs of further considerations, the relation (47) can be328

written, in accordance with Eqs. (52) and (53), in the329

form:330

{H1, H0} =
lω

2T0 M
√

V 2 + l2ω2

[

2T0
(

λξ cos ϕ331

+ λη sin ϕ
)

− MV
]

= 0. (57)332

Substituting the expressions (53) and (55) into the state333

Eqs. (25)–(27) yields:334

ξ̇B =
2T0

M

(

λξ cos ϕ+λη sin ϕ
)

cos ϕ,335

η̇B =
2T0

M

(

λξ cos ϕ+λη sin ϕ
)

sin ϕ, (58)336

ϕ̇ =
2T0

J ∗ λϕ, ω̇=
4T 2

0

M J ∗
(

λξ cos ϕ337

+ λη sin ϕ
) (

λξ sin ϕ−λη cos ϕ
)

, (59)338

V̇ =
4T 2

0

M J ∗
(

−λξ sin ϕ+λη cos ϕ
)

λϕ, (60)339

whereas, based on Eqs. (52), (53), and (55), the costate 340

equations (37)–(40) become: 341

λ̇ξ= 0, λ̇η= 0, (61) 342

λ̇ϕ =
2T0

M

(

λξ cos ϕ+λη sin ϕ
) (

λξ sin ϕ−λη cos ϕ
)

, 343

(62) 344

λ̇ω = −λϕ +
2T0

M

(

λξ sin ϕ − λη cos ϕ
)

, (63) 345

λ̇V =
2T0(−λξ sin ϕ+λη cos ϕ)

J ∗(λξ cos ϕ+λη sin ϕ)
λϕλV 346

−
(

λξ cos ϕ+λη sin ϕ
)

, (64) 347

and the first integral (43) obtains the following explicit 348

form: 349

−1 +
2T0

J ∗ λ2
ϕ +

2T0

M
(λξ cos ϕ + λη sin ϕ)2 = 0. (65) 350

Also, from Eq. (65), for the initial instant t0 one has 351

λ2
ϕ(t0) =

J ∗

2T0

(

1 −
2T0

M
λ2

ξ

)

, (66) 352

from where one can give a global estimation of the 353

value of the costate variable λξ 354

−

√

M

2T0
≤ λξ ≤

√

M

2T0
, (67) 355

whereas the estimation of the value of the costate vari- 356

able λη can be given based on the value of angle ϕf and 357

Eqs. (20) and (53) in the form: 358

−

√

M

2T0
cot

ϕf

2
≤ λη ≤

√

M

2T0
cot

ϕf

2
, ∀ϕf 
= 0.

(68) 359

Solving the two-point boundary value problem deter- 360

mined by Eqs. (28), (29), (30), (58)–(60), (61)–(64), 361

and (66) is based on the shooting method [19]. A three- 362

parameter shooting consists of determining unknown 363

values of the costate variables λξ and λη, as well as 364

a minimum required time tf . The procedure of deter- 365

mining unknown parameters by shooting method con- 366

sists of “shooting” the coordinates of the terminal state 367

(30), in accordance with Eqs. (58)–(60) and (61)–(64), 368

for the known initial state (28) and (29) as well as for 369

(66). The application of the shooting method requires 370
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The brachistochronic motion of a wheeled vehicle

Fig. 2 a Crossing of the
surfaces
ξB(tf ) = fξ (λξ , λη, tf ),
ηB(tf ) = fη(λξ , λη, tf ),
and ϕ(tf ) = fϕ(λξ , λη, tf )

for ϕf = π/2, b crossing of
the curves pf = f p(λξ , tf ),
qf = fq (λξ , tf ) for
ϕf = π/2

(a) (b)

the estimation of intervals containing the values of371

parameters to be determined. Based on estimates for372

the interval of values of the costate variables λξ and373

λη, given by the inequalities (67) and (68), it can be374

stated that all solutions for the respective two-point375

boundary value problem are certainly found within the376

given intervals, thereby the global minimum time in the377

brachistochronic motion of the vehicle. For the case of378

multiple solutions of the maximum principle, global379

minimum is the solution that has minimum value of380

the time tf .381

In solving the two-point boundary value problem,382

the following relations can be established in a numeri-383

cal form:384

ξB(tf) = fξ (λξ , λη, tf), ηB(tf)385

= fη(λξ , λη, tf), ϕ(tf) = fϕ(λξ , λη, tf).386

(69)387

Each of the surfaces in Eq. (69) conforms to the fulfill-388

ment of one end condition on the manifold (30), respec-389

tively. The surfaces (69) can be graphically represented390

in the three-dimensional λξ , λη, tf -space of unknown391

parameters, where the solution to the two-point bound-392

ary value problem is found at the intersection of these393

surfaces.394

The considered two-point boundary value problem395

is solved for the following values of the parameters:396

T0 = 1000
kgm2

s2
, ϕ(tf )397

=
π

2
, M1= 1000 kg, M2= 110 kg,398

J1 = 1500 kgm2, J2 = 30 kgm2, l1= 0.75 m, l2= 1.65 m, a 399

= 5 m, b = 5 m. (70) 400

Based on Eqs. (67), (68), and (70), the estimated 401

values of the costate variables λξ and λη read: 402

−0.74498 ≤ λξ ≤ 0.74498, 403

−0.74498 ≤ λη ≤ 0.74498, (71) 404

which is also graphically represented in Fig. 2. Finally, 405

for the given values of the parameters, one has that tf = 406

6.22571 s, λξ = 0.51219 s/m, and λη = 0.51219 s/m. 407

As above mentioned, global minimum of the time 408

of the brachistochronic motion of the vehicle as well 409

as the values of the costate variables λξ and λη can be 410

also determined based on the graphical representation 411

of the solution of the system of nonlinear equations 412

(69), as shown in Fig. 2a. It is evident from Fig. 2a 413

that the solution to the considered two-point boundary 414

value problem is unique, that is, the surfaces intersect 415

at one point. 416

Note that the solution of the two-point boundary 417

value problem considered may be determined in an 418

another way. Namely, it is possible now to determine 419

the intersections of the surfaces (69) as: 420

pf = fξ (λξ , λη, tf) ∩ fϕ(λξ , λη, tf), qf 421

= fη(λξ , λη, tf) ∩ fϕ(λξ , λη, tf), (72) 422

where pf and qf are the space curves represented by the 423

following dependencies established in numerical form: 424

pf = f p(λξ , tf), qf = fq(λξ , tf). (73) 425
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R. Radulović et al.

Fig. 3 Trajectories of the
point B and the vehicle
mass center T

mBξ mTξ

Fig. 4 Graphs of the angle
ϕ and the angular velocity ω

st st

Now, the solution of the two-point boundary value426

problem considered can be represented geometrically427

by the crossing points of the curves (73). This approach428

allows easy observation of the crossing points. The429

implementation of the method of crossing of curves430

(73) shown in Fig. 2b is realized by means of the built-431

in ContourPlot3D() function of the software package432

Mathematica. In Fig. 3 the trajectories of point B and433

the vehicle mass center are shown, while in Figs. 4,434

5, 6, and 7 the changes versus time of the quanti-435

ties ϕ, ω, θ , V , RA, RB , F1, and L1, respectively, are436

depicted.437

Based on previous considerations, now it is possible438

to determine the laws of change of minimum required439

sliding friction coefficients µ1 and µ2 determined by440

the inequalities (21) and (22), as shown in Fig. 8. In441

accordance with Eq. (70), the normal reactions of the442

horizontal plane amount to N1 = 3065.6 N and N2 =443

7823.5 N.444

The simultaneous fulfillment of conditions (21) and 445

(22) leads to the conclusion (see Fig. 8) that minimum 446

required value of the sliding friction coefficient is deter- 447

mined by µ2(tf) = |RA(tf)| /N2 = 0.14789. 448

This shows that the realization of brachistochronic 449

motion in accordance with the nonholonomic con- 450

straints (1) and (2) can be achieved only by the sin- 451

gular control if the sliding friction coefficient between 452

the vehicle wheels and horizontal plane satisfies the 453

inequality µ > 0.14789. 454

Now, let us show, by using the obtained numer- 455

ical solution of the problem, why it is justifiable 456

to neglect particular terms in Eq. (18) in deriving 457

state equations (25)–(27). Namely, the ratio of trade 458

between the neglected part of kinetic energy, T ∗ = 459

(2J2ωθ̇+ J2θ̇
2)/2, and used part of kinetic energy, T = 460

(MV 2 + J ∗ω2)/2, denoted by △T = |T ∗/T | · 100 %, 461

is shown in Fig. 9. By observing Fig. 9 it is noted that 462

the maximum value of the quantity △T is lower than 463
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The brachistochronic motion of a wheeled vehicle

Fig. 5 Graphs of the angle
θ and the speed V

st st

Fig. 6 Graphs of the
reactions of constraints RA

and RB

st st

Fig. 7 Graphs of the
driving force F1 and the
turning torque L1

1 %, whereby the justification of neglecting mentioned464

terms in Eq. (18) is shown.465

Also, the vehicle kinetic energy can be represented466

as T = Ttr + Trot where Ttr = MV 2/2 is the vehi-467

cle kinetic energy referring to translational motion of468

the vehicle body with velocity
−→
V and Trot = J ∗ω2/2 469

represents the vehicle kinetic energy referring to rota- 470

tional motion of the vehicle body around axis Bζ . 471

By observing Fig. 10 it can be noted that there is a 472

transfer between the energies Ttr and Trot such that 473
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Fig. 8 Graphs of minimum
required sliding friction
coefficients µ1 and µ2

st st

Fig. 9 The ratio △T versus time

T (t) = const. = T0 holds. This is explained by the474

fact that, taking into account that the vehicle poten-475

tial energy is constant, the conservation of the total476

mechanical energy of the system can be achieved only477

by mutual trade between the kinetic energies Ttr and478

Trot.479

4 Optimal control in the case of bounded reaction480

forces481

In this section, the analysis of brachistochronic motion482

will be carried out for the specified value of the dry483

friction coefficient µ between the wheels and plane of484

motion that satisfies the following double inequality:485

µ1 max < µ <0.14789, (74)486

where µ1 max is the maximum value of the func-487

tion µ1(t) that expresses the law of change of mini-488

0T

trT

rotT

Fig. 10 The kinetic energies Ttr and Trot versus time

mum required value of the sliding friction coefficient 489

between the wheels of the rear vehicle axle and the 490

plane of motion on the interval [t0, tf ]. In this case, due 491

to the specified value for the coefficient µ, the restric- 492

tion (21) must be imposed on the projection RA. Note 493

that if condition (74) is satisfied, then side slipping of 494

the rear wheels does not occur. Based on the graphic 495

of the function RA(t) shown in Fig. 6, the controller 496

sequence is to be sing-max, i.e., 497

u =
{

using, if 0 ≤ t < t1
umax = µN2, if t1 ≤ t ≤ tf

, (75) 498

where singular control using is determined by the 499

expression (55), whereas t1 is the time instant corre- 500

sponding to the discontinuity point of the function u(t). 501
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The brachistochronic motion of a wheeled vehicle

It should be pointed out that at the junction between502

singular and nonsingular subarcs of an optimal con-503

trol, the necessary conditions for the optimality of junc-504

tions must be satisfied, as regulated by Theorem 1 from505

[20,21]. Namely, let 2q be the lowest order time deriv-506

ative of the switching function H1 which contains the507

control u explicitly and u(r) (r ≥ 0) be the lowest508

order derivative of the control u which is discontinuous509

at the junction point. Then, in accordance with Theo-510

rem 1 [20,21], the necessary condition for the junction511

between singular and nonsingular subarcs is expressed512

by the condition that the sum of q +r is an odd integer.513

For our case, we have that q = 1 and r = 0 (see Eq.514

75); consequently, it holds that q +r = 1, which means515

the necessary condition for the optimality of junction516

is satisfied.517

As in the previous case, numerical procedure for518

solving the two-point boundary value problem, for dif-519

ferent values of the sliding friction coefficient µ that520

satisfy the inequality (74), is based on shooting method.521

In this case, we have a five-parameter shooting that con-522

sists of defining the unknown costate variables λξ and523

λη, time instants t1 and tf as well as the value of speed524

Vf corresponding to the time instant tf . Numerical pro-525

cedure for solving Cauchy’s problem of the system of526

differential equations of the first kind by applying the527

Runge–Kutta method can be represented by the follow-528

ing step scheme:529

– In the first step, for the time interval [t1, tf ] that cor-530

responds to the nonsingular subarc of the control u,531

backward integration of the differential equations532

(25)–(27) and (37)–(40) is performed, with the ini-533

tial conditions ξB(tf) = a, ηB(tf) = b, ϕ(tf) =534

ϕf , ω(tf) =
√

(

2T0 − MV 2
f

)

/J ∗, V (tf) = Vf ,535

λϕ(tf) =
[

1 − Vf
(

λξ cos ϕf + λη sin ϕf
)]

/ω(tf),536

λω(tf) = 0, and λV (tf) = 0. Using the switching537

function (33) as well as its time derivative defined538

by Eq. (57), the following functional dependencies539

can be generated in the numerical form H1(t1) =540

f1(tf , t1, λξ , λη, Vf) and {H1, H0}(t1) = f2541

(tf , t1, λξ , λη, Vf) corresponding to the time 542

instant t1. 543

– In the second step, for the time interval [t0, t1] 544

that corresponds to the singular subarc of the 545

control u, the backward integration of the differ- 546

ential equations (58)–(60) and (61)–(64) is per- 547

formed, with the initial conditions ξB(t1), ηB(t1), 548

ϕ(t1), ω(t1), V (t1), λϕ(t1), λω(t1), and λV (t1) 549

obtained in the previous step. Using the initial 550

conditions (28) and (29), the following functional 551

dependencies can be generated in the numerical 552

form ξB(0) = f3(tf , t1, λξ , λη, Vf), ηB(0) = 553

f4(tf , t1, λξ , λη, Vf), and ϕ (0) = f5(tf , t1, λξ , 554

λη, Vf) corresponding to the time instant t0 = 0. 555

Solving the system of nonlinear equations defined in 556

the previous step, and using Eqs. (28), (29), (36), and 557

(57), it is obtained: 558

fi (tf , t1, λξ , λη, Vf) = 0, i = 1, 5, (76) 559

from where the unknowns λξ , λη, t1, tf , and Vf are 560

determined. 561

The estimate of Vf can be given by observing the 562

relation (20) at the instant tf as follows: 563

−
√

2T0

M
≤ Vf ≤

√

2T0

M
, (77) 564

where t1 ≥ 0 and tf ≥ 0. In this case, the estimate 565

of the costate variables λξ and λη cannot be explic- 566

itly given, but the values determined in the previous 567

section can be taken for initial values. For the values of 568

the parameters (70) as well as for different values of the 569

coefficient µ chosen in accordance with the inequality 570

(74), the values of the parameters λξ , λη, t1, tf , and 571

Vf were determined, as shown in Table 1. Figure 11 572

displays the graphs of the function ηB(ξB) for dif- 573

ferent values of the coefficient µ. Figures 12 and 13 574

give graphical representation of the laws of change 575

of the functions ϕ(t), θ(t), ω(t), and V (t) for differ- 576

Table 1 Values of λξ , λη,
t1, tf , Vf , and µ1 max for
various values of the
coefficient µ

µ λξ (s/m) λη (s/m) t1 (s) tf (s) Vf (m/s) µ1 max

0.13 0.51221 0.51218 5.86088 6.22571 0.93142 0.05210

0.11 0.51252 0.51187 5.40027 6.22581 0.96214 0.05870

0.09 0.51424 0.51011 4.84490 6.22668 1.01417 0.05320

0.08 0.51650 0.50778 4.50509 6.22813 1.04739 0.05143
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R. Radulović et al.

ent values of the coefficient µ. Figure 14 shows the577

driving force F1(t) and the turning torque L1(t) versus578

time, whereas Fig. 15 represents the graphs of opti-579

Fig. 11 Trajectories of the point B for different values of the
coefficient µ

mal control u(t) and RB(t) for different values of the 580

coefficient µ. 581

Since the optimal control u(t) has a discontinuity 582

at the junction point of subarcs (see Fig. 15) it can 583

be readily deduced that the conditions for the junc- 584

tion between singular and nonsingular subarcs on the 585

optimal trajectory are satisfied. Also, from Fig. 16, 586

where the function µ1(t) for different values of µ is 587

shown, as well as from the last column of Table 1 it 588

can be deduced that at any time instant the condition 589

(74) is satisfied, and accordingly the condition (13) as 590

well. From numerically determined values displayed 591

in Table 1, it is noticeable that the decreasing of the 592

coefficient µ is accompanied by the decreasing of the 593

singular subarc, that is, the time instant t1 tends to 594

zero. On the basis of previously defined numerical algo- 595

rithm, the value of µ = µ∗can be determined, where 596

t1 = 0, in such a way that functional dependencies 597

in the numerical form, fi (tf , t1, λξ , λη, Vf , µ∗) = 598

0, i = 1, 5, will be adjoined by the functional depen- 599

dence f6(tf , t1, λξ , λη, Vf , µ∗) = 0 in the same way 600

Fig. 12 Graphs of the
angles ϕ and θ for different
values of the coefficient µ

Fig. 13 Graphs of the
angular velocity ω and the
velocity V of point B of the
vehicle for different values
of the coefficient µ
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The brachistochronic motion of a wheeled vehicle

Fig. 14 Graphs of the
driving force F1 and the
turning torque L1 for
different values of the
coefficient µ

Fig. 15 Graphs of the
optimal control u and the
reaction force RB for
different values of the
coefficient µ

as defined in the first step. This dependence expresses601

the fact that t1 = 0 holds when µ takes the value µ∗. In602

accordance with that, the following values are obtained:603

tf = 6.34533 s, µ∗ = 0.03465, λξ = 0.68696 s/m,604

λη = 0.25953 s/m, and Vf = 1.23776 m/s. On the605

basis of numerical values of µ1 max shown in Table 1,606

as well as a defined value of µ∗ = 0.03465, it can be607

deduced that µ∗ is not in accordance with condition608

(74), thereby with a setup optimal control problem and609

necessary dynamic condition (22). Consequently, the610

case when the friction coefficient µ takes the values in611

the interval µ∗ ≤ µ ≤ µ1 max has not been considered.612

In Fig. 17, where the switching function H1 for dif-613

ferent values of µ is graphically represented, it is evi-614

dent that H1 (τ ) > 0,∀τ ∈ (t1, tf ]. It can be shown615

that the Kelley optimality condition (56) is satisfied616

here as well.617

Fig. 16 Graphs of minimum required sliding friction coefficient
µ1 for different values of the coefficient µ
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Fig. 17 Graphs of the switching function H1 for different values
of the coefficient µ

5 Conclusions618

This paper considers the problem of brachistochronic619

motion of a wheeled vehicle. The presented procedure620

can be deployed to establish, for the specified vehicle621

parameters, the necessary values of dry friction coeffi-622

cients between the vehicle wheels and horizontal plane623

of motion to realize the brachistochronic motion of the624

vehicle without side slipping of the wheels. It has been625

shown that the brachistochronic motion of the vehicle626

is not possible to realize without using singular control.627

Namely, in satisfying the conditions (74), the optimal628

extremal begins with a singular subarc and ends with a629

nonsingular subarc (see the optimal control policy 75).630

Furthermore, for sufficiently high value of the friction631

coefficient, optimal control is singular in its entirety.632

In accordance with the analysis presented in Sect. 3,633

it can be deduced that the front vehicle wheels require634

a higher value of the friction coefficient than needed635

by the rear wheels to prevent side slipping. This fact is636

justifiable in decision making to take for control vari-637

able the projection of the reaction force applied to the638

front vehicle wheels from the horizontal plane onto the639

axis of the front vehicle axle. The law of change of the640

angle of rotation of the front axle, θ(t), is determined641

from Eq. (4) as θ(t) = arctan(lω(t)/V (t)), and its642

direction is anticlockwise during the brachistochronic643

motion of the vehicle (see Figs. 5, 12). Due to the rela-644

tion J2 << J1, the brachistochronic motion of the vehi-645

cle is realized by the control torque
−→
L 1 which has a646

very low magnitude (see Eq. 15 and Figs. 7, 14). Also,647

since from Eq. (19) one has that F1 = −J2θ̇ (ω̇+θ̈ )/V , 648

an identical conclusion can be drawn for the magnitude 649

of the control force
−→
F 1 (see Figs. 7, 14). Also, from 650

Figs. 7 and 14 it can be observed that during the brachis- 651

tochronic motion the force
−→
F 1 and the torque

−→
L 1 652

have variable directions. Finally, it should be pointed 653

out that for the case of the vehicle considered in our 654

work, moving along a horizontal surface, the poten- 655

tial energy of the system is constant. Due to this fact, 656

it follows from the law of conservation of the vehi- 657

cle total energy that the vehicle kinetic energy must 658

be constant, which is realized by optimal energy trans- 659

fer between the translational kinetic energy and rota- 660

tional kinetic energy of the vehicle. On the other hand, 661

note that in the case of classical brachistochrone prob- 662

lem (a particle moving in a vertical plane) one has an 663

optimal trade between the potential and the kinetic 664

energy of the particle during the brachistochronic 665

motion. 666
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