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PREDICTION OF THE WEAR CHARACTERISTICS OF ZA-27/SiC 
NANOCOMPOSITES USING THE ARTIFICIAL NEURAL NETWORK 

Aleksandar Vencl1,, Blaža Stojanović2, Slavica Miladinović3, Damjan Klobčar4 

Abstract: The zinc-aluminium casting alloy ZA-27 is well-established and is a frequently 
used material for plain bearing sleeves. It has good physical, mechanical and 
tribological properties. Its tribological properties can be improved further by adding 
hard ceramic particles to the alloy. The tested nanocomposites were produced by the 
compocasting process with mechanical alloying preprocessing (ball milling). Three 
different amounts of SiC nanoparticles, with the same average size of 50 nm, were 
used as reinforcement, i.e. 0.2, 0.3 and 0.5 wt. %. Tests were performed on a block-
on-disc tribometer (line contact) under lubricated sliding conditions, at two sliding 
speeds (0.25 and 1 m/s), two normal loads (40 and 100 N) and a sliding distance of 
1000 m. The prediction of wear rate was performed with the use of an artificial neural 
network (ANN). After training the ANN with architecture 3-4-1, the regression 
coefficient for the network was 0.99973. The experimental values and values obtained 
by applying the Taguchi method were compared with the predicted values, showing 
that ANN is more efficient in predicting wear. 

Key words: Artificial neural network, Nanocomposites, Nanoparticles, Wear, ZA-27 alloy 

1 INTRODUCTION 

The ZA-27 alloy [1] is a zinc-aluminium casting alloy which is a frequently used 
material for plain bearing sleeves. Although it has good physical, mechanical, corrosion 
and tribological properties, it can be improved further by adding hard ceramic particles 
to the alloy [2-6]. Nanocomposites are a relatively new kind of material that is made up 
of a matrix and nano-size reinforcements with substantially distinct physical and 
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mechanical characteristics from the matrix. They can be made using a variety of 
processing techniques [7,8]. Due to the size of the reinforcement, surface 
characteristics rather than bulk qualities dominate the properties of nanocomposite 
materials. Furthermore, the nano-scale reduction in the size of the reinforcement 
phase increases the importance of particle interaction with dislocations, which, when 
combined with other strengthening effects found in microcomposites, results in 
improved mechanical properties. 

The artificial neural network (ANN) is a computer programme that can simulate 
relationships between a set of input and output variables. Numerous ANNs have been 
used to solve challenging scientific and engineering issues in a variety of domains [9]. 
The ANN tends to mimic the operations of the human brain and transmits information 
via mutually connected nodes called neurons. It employs the black-box modelling 
principle, which, in contrast to white and grey-box modelling, permits the exclusion of 
physical information or equations that relate the relationship between the input and 
matching output without the loss of accuracy. Each ANN is made up of three layers: 
the input layer, the hidden layer, and the output layer. The number of neurons in the 
input layer is the same as the number of input factors, and the number of neurons in 
the output layer is the same as the number of output factors. The hidden layer, 
however, can have many layers and can have different numbers of neurons in each 
layer [10]. ANN is usually used with a high amount of input data, but it can be used 
successfully for small data sets as well. For example, the application of ANN for the 
prediction of the wear rate of vacuum casted ZA-27 alloy composites reinforced with 
marble dust was done based on 25 experiments [11], while in another example, the 
prediction of wear and coefficient of friction of ZA/ZrB2 composite was done based on 
only 20 experiments [12]. For both investigations, ANN gave a good correlation 
between predicted and experimental values. 

Our previous study [13] demonstrated that nano-size reinforcement led to a 
finer structure in the nanocomposites matrix and improvement of basic mechanical 
properties (hardness and compressive yield strength). Erosive wear properties were 
also slightly improved due to the increase in ductility of nanocomposites [14], as well 
as the sliding wear resistance in lubricated conditions [15]. In this paper, we apply ANN 
to the experimentally acquired wear values to see if it can predict them with acceptable 
accuracy. 

2 EXPERIMENTAL DETAILS 

2.1 Materials and wear testing 

The chemical composition of the matrix material, zinc-aluminium alloy ZA-27, 
was according to the ASTM standard [1]. Three nanocomposites with 0.2, 0.3, and 0.5 
wt. % SiC (particle size < 50 nm) were produced through the compocasting process 
with mechanical alloying pre-processing (ball milling). Prior to the compocasting 
technique, ball milling was used to mechanically alloy matrix alloy metal chips with 
nanoparticles. The apparatus used for semi-solid processing is described elsewhere 
[15], as well as the production process parameters and a detailed description of the 
experimental procedure [13,14]. 

Experimental research of the wear characteristics was carried out under 
lubricated sliding conditions, on a tribometer with a block-on-disc contact geometry. 
Lubrication was provided by gear oil (ISO VG 220, ISO L-CKC/CKD). The blocks were 
produced from tested nanocomposites, while the discs were made of hardened and 
tempered steel 42CrMo4. The tests were conducted over a 1000 m sliding distance at 
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sliding speeds of 0.5 and 1 m/s and normal loads of 40 and 100 N. The wear scars on 
the blocks were measured after each test to calculate the wear volume. 

2.2 Artificial neural network (ANN) model 

The ANN simulation starts with a "training" process in which a set of inputs are 

applied to the network and the resulting set of outputs is compared to known values. 

The training is performed until the error between the output and known values reach 
some predefined value. This means that ANN may take a long time to be ready for 

use. Once it has been trained, the network can be used to predict the output for inputs 

that were not in the training data set. ANNs are reliable for prediction within the trained 

data range, but not for prediction beyond the trained data range [17]. 

In this study, a feed-forward backpropagation multilayer ANN is employed. 

Training and testing of the ANN are conducted using the software MATLAB R2016a. 
The logarithmic sigmoid transfer function (logsig) and linear transfer function 

(purelin) are used as activation transfer functions, while the Levenberg-Marquardt 

backpropagation algorithm (trainlm) is used as the training algorithm. Several ANN 

architectures have been tested (3-3-1, 3-4-1 and 3-10-1) in order to get the one with 

the best prediction accuracy. One hidden layer was chosen due to a small data set 
and low complexity of the experiment (investigation) [18]. Ultimately, the developed 

ANN had architecture 3-4-1 (Fig. 1), which means it had three inputs (SiC amount, 

sliding speed, and normal load), 4 neurons in one hidden layer, and one output 

(wear rate). 

 

Figure 1. Architecture of the developed feed-forward backpropagation multilayer ANN 

3 RESULTS AND DISCUSSION 

The values of the used parameters in the input layer of the modelled ANN were 

shown in Table 1. The experimental output values [15], which were used for training, 
validation and testing of the ANN, are also shown in Table 1. An ANN was trained 

using 70 % of the data, while 15 % was used for testing and 15 % for validation. The 

performance and accuracy of the used ANN model are evaluated through statistical 
indicators such as mean square error (MSE) and regression coefficient (R) [17,19]. 

The closer the MSE value gets to zero, the better the accuracy of the model is. On the 
other hand, the ideal value for R is 1, and the closer it gets to one, the better 

correlation between the two groups of data (target and output values) is. 
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Figure 2. Performance of the modelled ANN – mean square error and training state plots 

 

Figure 3. Accuracy of the modelled ANN – regression analysis of different phases 
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The performance of the modelled ANN is shown in Figure 2, and it can be 
noticed that the mean square error (MSE) for training initially has a high value and then 
decreases to a very small value as the number of epochs increases. This means that 
the ANN's training process is being performed correctly. Even though training 
continues until epoch 6, the best validation performance is achieved at epoch 0 with a 
value of 0.0000298. The training state of ANN (Fig. 2) shows that the final value of the 
gradient coefficient at epoch 6 is very close to zero, i.e. 7.0663 × 10–8. 

Regression analysis of the modelled ANN is performed and the regression 
coefficient for training, validation and testing, as well as the overall regression 
coefficient of the network, was obtained and shown in Figure 3. The overall regression 
coefficient of the network was very close to 1 (R = 0.99973), indicating a good fit and 
good agreement between the experimental results and the ANN model prediction. 

Based on the developed mathematical model, using modelled ANN, it is 
possible to predict the wear rate of the nanocomposites within the limits of the 
experiment (trained data range). The values of the wear rate predicted with ANN are 
presented in Table 1 and compared with the experimental data. The deviation (error) of 
the predicted values from the experimentally measured values is expressed through 
their difference, which is also calculated as the percentage increase/decrease. 
Although there was a small number of data for ANN training (only 12 data), these 
differences were very small and the average error was only 3.38 %. 

Table 1. Input layer values, experimental data and predicted ANN output values of the 
composite wear rate 

Sample 
no. 

SiC 
amount, 

wt. % 

Sliding 
speed, 

m/s 

Normal 
load, N 

Wear rate x 10–4, mm3/m 

experimentally 
measured 

predicted with 
ANN 

error ± error, 
% 

1 0.0 0.25 40 1.815 1.861 -0.045 2.49 

2 0.0 0.25 100 4.304 4.303 0.000 0.01 

3 0.0 1.00 40 1.476 1.510 -0.034 2.30 

4 0.0 1.00 100 4.099 4.117 -0.018 0.44 

5 0.2 0.25 40 0.436 0.432 0.004 0.87 

6 0.2 0.25 100 1.221 1.230 -0.009 0.78 

7 0.2 1.00 40 0.486 0.487 -0.001 0.15 

8 0.2 1.00 100 0.548 0.606 -0.058 10.53 

9 0.3 0.25 40 0.402 0.403 -0.001 0.22 

10 0.3 0.25 100 1.162 1.154 0.008 0.66 

11 0.3 1.00 40 0.356 0.456 -0.099 27.80 

12 0.3 1.00 100 0.452 0.451 0.001 0.20 

13 0.5 0.25 40 0.209 0.209 0.000 0.08 

14 0.5 0.25 100 0.828 0.874 -0.046 5.55 

15 0.5 1.00 40 0.174 0.171 0.003 1.72 

16 0.5 1.00 100 0.404 0.405 -0.001 0.25 

Average ± error, % 3.38 

 
The accuracy of the ANN prediction was compared with the prediction obtained 

with the Taguchi method [15], for the same experimental set of data, and presented in 
Figure 4. It can be noticed that, in both cases, there is a good correlation between 
experimental and predicted values and both prediction methods can be used with high 
reliability. However, values obtained by the modelled ANN are closer to experimental 
values; therefore, it can be concluded that in this case, the ANN is more efficient in 
predicting wear rate. 
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Figure 4. Comparison of experimental, Taguchi and ANN results 

4 CONCLUSIONS 

In this study, ANN was used to investigate and predict how the SiC 

nanoparticles, sliding speed and normal load affect the wear rate of ZA-27/SiC 

nanocomposites. The optimal architecture for the modelled ANN was 3-4-1, i.e. the 

one with three inputs (SiC amount, sliding speed, and normal load), 4 neurons in one 

hidden layer, and one output (wear rate). The ANN model was developed using the 
software MATLAB R2016a. 

When compared to the experimental measurements, the results predicted by 
the ANN model are adequate, i.e. the regression coefficient was very close to 1 (R = 

0.99973), and the average error was less than 3.38 %. Therefore, testing time and cost 

can be reduced by obtaining satisfactory results using the developed ANN rather than 

measuring them. 
By comparing the two predicting methods (Taguchi and ANN), it can be 

concluded that ANN, in this case, is more efficient in the prediction of wear rate since 

their predicted values are closer to the experimentally measured values. In future 

research, some other machine learning techniques like random forest, gradient 

boosting and decision trees could be applied and then compared to ANN, because 

these techniques are suitable for small data sets. 
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