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Abstract.The problem of the brachistochronic motion of a holonomic scleronomic mechanical system is analyzed. The system moves 

in an arbitrary field of known potential forces. The problem is formulated as an optimal control task, where generalized speeds are 

taken as control variables. The problem considered is reduced to solving the corresponding two-point boundary-value problem 

(TPBVP). In order to determine the global minimal solution of the TPBVP, an appropriate numerical procedure based on the shooting 

method is presented. The global minimal solution represents the solution with the minimum time of motion. The procedure is 

illustrated by an example of determining the brachistochronic motion of a disk that performs plane motion in a vertical plane in a 

homogeneous field of gravity. 

Key words: brachistochronic motion, optimal control, holonomic, mechanical system, shooting method 

1. Introduction 

 

In [1], the classical brachistochrone problem (find a smooth curve down which a particle slides 

from rest at a point A  to a point B  in a vertical plane influenced by its own gravity in the least time)  

was formulated for the first time as the problem of the optimal control theory. By using the calculus of 

variation, in [2] generalization of the classical brachistochrone problem for a conservative holonomic 

dynamical system with n  degrees of freedom was performed.  In our paper, the brachistochronic motion 

of such dynamical system is analized in the framework of the optimal control theory.  

Solving the formulated problem of optimal control can deploy the methods that are generally 

arranged into two major groups such as direct and indirect ones. For the survey of literature about these 

methods refer to, e.g., [3]. The direct methods are based on the discretization of the formulated optimal 

problem in order to obtain a nonlinear programming problem, while in indirect ones a corresponding 

two point boundary value problem (TPBVP) is numerically solved. The  TPBVP is derived by means of 

the calculus of variations and Pontryagin’s maximum principle.  

The shooting technique [4] is applied in this paper to solve the TPBVP. The disadvantage of the 

shooting method is that convergence to a numerical solution of the TPBVP is very sensitive to initial 

guess for the initial (or final) values of the costate (adjoint) variables. In other words, to realize 

convergence, it is necessary to provide that initial guess for the costates is sufficiently close to the 

optimal solution. Since the costate variables, as a rule, have no physical interpretations, the estimation of  

initial (or final) values of the costates represents a challenging task. In that regard, various methods were 

proposed for suitable estimation of initial values of costates. Paper [5] describes a method where initial 
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costates are expressed in terms of state variables for which the values can be guessed. Paper [6] 

employs a method based on dynamic programming, whereas in [7] the costates estimation is 

achieved by means of  a Legendre pseudospectral method. A concise review  of  mentioned 

method is given in [8]. On the other hand, papers [9,10] depict two different methods for 

determining inital costates based on the homotopy  approach. By using the theory of canonical 

transformation and generating functions in Hamiltonian dynamics, paper [11] presents a method 

for determining initial and/or terminal costates via known initial and/or terminal values of states. 

In [12] the necessity for evaluating initial costates is avoided by adequate choice of control 

variables. Finally, in recently published paper [13], after a TPBVP is formed corresponding to an 

optimal control problem considered, it is appropriately modified by means of the continuation 

method and discretized by the Gauss pseudospectral method, whereby a system of nonlinear 

algebraic equations is obtained. Numerical solution of this system yielded approximate values of 

costates. 

Our paper was motivated by the fact that, in a general case, the brahistohrone problem of 

the considered mechanical system may have more than one solution. In such systems it is needed 

to establish all possible solutions that satisfy neccessary optimality conditions and to choose the 

one to which the minimum time of the brachistochronic motion of a system corresponds. Further 

considerations will refer to this time as the global minimum time. In this paper, for considered 

brachistochrone problem a relative simple method for the estimation of both minimal and 

maximal values of inital costates is presented. On the basis of this estimation, all possible 

solutions of the brachistochrone problem were established and consequently the global minimum 

time was defined. The paper is organized as follows: In Section 2 the brachistochrone problem of 

a conservative holonomic mechanical system with n  degrees of freedom is formulated in the 

framework of optimal control theory. The corresponding TPBVP is defined. In Section 3 the 

approach for the estimation of the upper and lower bounds of initial costates values is given. This 

estimation was the basis for presenting one procedure to establish all possible solutions of the 

considered brachistochrone problem, and therefore to define the global minimum time. A 

numerical example is solved in Section 4. Conclusions are drawn in Section 5. 

 

 

2. The brachistochronic motion problem as an optimal control problem 

 

Let us consider the motion of a holonomic scleronomic conservative mechanical system with n   degrees 

of freedom. The configuration of the system is defined by n  generalized coordinates 1, ,
T

nq q   q . The 

kinetic and potential energies of the system are given as [14,15]: 

  
1

, Π Π( )
2

TT  Mq q q   = q ,  (1) 

where ( ) n nM q  is the symmetric positive definite mass matrix and  1, ,
T

nq qq  is the vector of 

generalized velocities. Let the following initial and terminal constraints be given: 

 0 0 00, ( ) ,t t   q q      (2) 
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 1, ψ ( ), ,ψ ( ) , ,
T

f f m ft t m n    
 

0  ψ q q  (3) 

where 0 1(0) (0), ,
T

nq q   q , 0 (0)( ) ( 1, )i iq t q i n   , 1( ) ( ), ,
T

f f n fq q   q , ( )( ) ( 1, )i f i fq t q i n  , the final 

time ft  is free, and 

 ( )rank / ( 1, ; 1, ) ,k i fq m i n k m            (4) 

where  ( )/ m n
k i fq       is the constraint Jacobian matrix [14,15].  

Also, the total  mechanical energy of the system is conserved during the motion [14,15], that is: 

       0Φ , , Π 0,T E   q q q q q  (5) 

where 0E  is the total mechanical energy of the system at the initial instant 0 0.t   

The brachistochrone problem of the mechanical system may be formulated as the optimal control 

task. Namely, taking the generalized velocities as control variables 

 ,     1, ,i iq u i n   (6) 

the brachistochrone problem of the mechanical system consists in determining the optimal controls

1,...,
T

nu u   u as well as the system motion ( )( 1, )iq t i n  corresponding to them, so that the mechanical 

system moves in the shortest time ft  from the initial state (2) to the terminal state (3) with unchanged 

value of the total mechanical energy of the system (5). This can be expressed as the minimization of the 

functional 

 

0

,

ft

I dt   (7) 

subject to (2), (3), and (5). Note that in [12] the controls are taken as ( 1, 1)i iu q i n   , which required 

the application of the singular control theory [16, 17].  In order to solve the optimal control problem 

formulated by means of Pontryagin’s maximum principle, the Hamiltonian and an augmented terminal 

function are defined as follows respectively (see [18,19]): 

  1 , ,TH     λ u q u     (8) 

 ,TG  ν ψ                (9) 

  

where  1, ,
T

m ν is an m -dimensional constant Lagrange multiplier vector,  1( ), , ( )
T

nt t λ  is an 

n -dimensional costate (adjoint) vector, and ( )t are the Lagrange multiplier. The well-known first-order 

necessary conditions of optimality [18,19] are the state equations (6), the terminal conditions (3) as well 

as: 

 ,

T
H 

  
 

λ
q

 (10) 
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 0,

T
H 

 
 u

 (11) 

 ( ) 0,fH t   (12) 

 ,

T

f
f

G 
 
 
 

λ
q

 (13) 

where  1( ) ( ), ,
T

f f n f    λ , ( )( ) ( 1, )i f i ft i n   . 

From (10) and (11) it follows that: 

 μ ( ) .  Mλ q u  (14) 

Since the Hamiltonian is not dependent explicitly  on time and taking into account (12), the system has 

the first integral of motion [18,19], 0)( tH , or in the developed form: 

  1 μΦ , 0.T   λ u q u  (15) 

Combining   Eqs. (5), (14), and (15), the multiplier  is determined by: 

 
 0

1
μ .

2 Π
=

E


  q
 (16) 

Now, Eqs. (10), (14),  and (16) yield: 

 
 

 

0

1
,

2 Π

T

E

 
       

Φ q, u
λ

qq
 (17) 

   1
02 Π ( ) .E    Mu q q λ  (18) 

Finally, in accordance with the above relations, the problem posed is reduced to solving a system of n2

first-order differential equations of the form: 

   1
02 ( ) ,E    Mq q q λ  (19) 

 
 

 

0

1
.

2 Π

T

E

 
       

Φ q, u
λ

qq
            (20) 

The general solution of this equation system consists of n2 unknown integration constants, and to 

determine them the relations (2) and (3) provide mn  conditions. The remaining mn  necessary 

conditions can be obtained from (13). Namely, according to (3), in the equation system (13) there is an 

equation subsystem containing m equations for which the relation (4) holds. Solving this system for 

),1( mkk  and substituting the thus obtained multipliers into the remaining mn  equations of the system, 

Eq. (13) yields the required additional mn   conditions to determine the integration constants as follows: 

  , 0, 1, .f f n m   ψ q λ  (21) 
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3. Shooting method and determination of the upper and lower bounds for the values of initial 

costates 

 

The numerical procedure for determining a particular solution of the equation system (19)-(20), 

corresponding to the boundary conditions  (2), (3) and (21), is based on the shooting method [4]. The 

application of this method requires the evaluation of the interval of the values of the multipliers ( 1, )iλ i n

at the initial instant, that is, (0) 0( )( 1, )iλ λ t i n  . This task can be realized in the following way. Namely, 

applying the first integral (15) at the initial instant of the motion and using Eqs. (16) and (18), a positive 

definite quadratic form can be written as follows: 

 
 

1
0 0 0

0 0

1
( ) ,

2 Π

T

E

 


Mλ q λ  (22) 

where 0 1(0) (0), ,
T

n    λ , (0) 0( ) ( 1, )i i t i n    , 0 1(0) (0), ,
T

nq q 
 

q , and 0 0( )  q . In order to 

reduce the quadratic form (22) to the canonical form [21], a linear orthogonal  transformation of the 

Lagrange multipliers is introduced as follows: 

 0 0 ,= 
Sλ λ  (23) 

where 0 1(0) (0), ,
T

n    
 

λ , 0 (0)( ) ( 1, )i it i n     , and  n nR S is an orthogonal transformation 

matrix (also called eigenvector matrix [21]) such that  1 1
0 1( ) , , ndiag e e  S M Sq , where ( 1, )ie i n  

are the eigenvalues of the matrix 1
0( )

M q . After the application of the above coordinate transformation, 

the following canonical form of (22) is obtained: 

      
 

2 2 2

1 1(0) 2 2(0) (0)
0 0

1
... .

2 Π
n ne λ e λ e λ

E

     


 (24) 

Finally, the canonical form (24) implies the following estimations of the values of the Lagrange 

multipliers (0) ( 1, )iλ i n  :  

 

   

   

   

1(0)
0 0 1 0 0 1

2(0)
0 0 2 0 0 2

(0)
0 0 0 0

1 1
,

2 Π 2 Π

1 1
,

2 Π 2 Π

.............................................................................

1 1
,

2 Π 2 Π
n

n n

λ
E e E e

λ
E e E e

λ
E e E e







  
 

  
 

  
 

 (25) 

 

where the global estimation of the initial values (0) ( 1, )iλ i n can be provided based on (23) and (25). Note 

that for 0 0t   from the first integral (15) one initial costate, let's say 2(0) , can be expressed through the 
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rest of 1n  initial costates. In the case when 0( )M q  represents a diagonal matrix, the  quadratic form 

(22) has the canonical form, and it is then possible from this canonical form to directly express the initial 

costate 2(0)  through the rest of initial costates. In this way, the number of  initial costates participating 

in the shooting process is reduced by one.    

For the initial costates (0) ( 1, )i i n   and the initial states (0) ( 1, )iq i n , the final states and costates can 

be obtained through the forward integration of differential equations (19) and (20). In this manner, 

taking into account that the final states and costates should satisfy the conditions (3) and (21), the 

following relations can be established in numerical form: 

      1 1 1( ), , ( ), , , , , ,
T

f m f f f n m f f n    
 

  
 

Γ 0z q q q λ q λ      (26) 

where   1
1( ) ( ), , ( )

T n
n

   Γ z z z  is called the shooting function [10] and 

1(0) 3(0) (0), , , ,f nt      z .  

Based on the global evaluation of all initial values 1(0) 3(0) (0), , , n   it can be asserted that all 

solutions of corresponding TPBVP are located within the specified intervals, where 0ft  . For the case 

of multiple solutions of Pontryagin’s maximum principle, the global minimum is a solution 

corresponding to the minimum value of the terminal time ft . The solutions of TPBVP for mechanical 

systems with 3DOF can be graphically represented in the space 3  by means of built-in 

ContourPlot3D() Mathematica function (see e.g. [22]), which will be shown in a numerical example to 

follow. Although we are now able to determine the estimation of all initial values for
 

1(0) 3(0) (0), , , n   , the global minimum time can be determined for mechanical system up to 3DOF 

by visual observation. For the mechanical systems with the higher than 3 DOF, the methods presented in 

papers [23,24] can be applied to determine all possible solutions of the system of nonlinear algebraic 

equations (26) with the condition (25). 
 

4. Numerical example 

 

Let us consider a circular disk with a radius R and mass m . The disk is moving in a uniform gravitational 

field in a vertical plane coinciding with the plane Oxy (see Fig. 1) of the inertial reference frame Oxyz

,where y represents the vertical axis directed downwards. A linear spring with a natural (unstretched) 

length of R0 and modulus c is attached to the mass center C of the disk, as depicted in Fig. 1. The local 

coordinate frame C  has its origin at point C and it is attached to the disk in the manner shown in Fig. 

1. At time 0t , the axes of the frame C are denoted with 0 0 0 0C    . The disk position relative to the 

frame Oxyz defines a set of Lagrange coordinates  1 2 3, ,
T

q q qq where 1q  and 2q are the Cartesian 

coordinates of the mass center C , while 3q  represents the angle of rotation of the disk (see Fig. 1). 
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Fig.1.Motion of the disk in the vertical plane .Oxy
 

 

The kinetic and potential energies of the disk, respectively, are: 

 2 2 2 2
1 2 3

1 1
,

2 2
T M q q R q

 
   

 
 (27) 

 
2

2 2
2 1 2

1
Π ,

2
= Mgq + c q q R

 
   

 
 (28) 

where g g j  and g is the gravity acceleration. In the case considered, the conditions (3) and (4) read: 

 0 1(0) 2(0) 3(0)0, 0, , 0,t q q R q     (29) 

 1 2( ) 1( ), ψ 5 sin 0,f f ft t q q      (30) 

 2 3( )ψ 2 0,fq π    (31) 

where (31) means that, at the terminal instant ft , the disk mass center must be positioned on the 

sinusoide ( ) 5 sin( )f x x  . The relation (5), based on (27) and (28), takes the following form: 

                             
2

2 2 2 2 2 2
1 2 3 2 1 2 0

1 1 1
Φ , 0.

2 2 2
M q q R q Mgq + c q q R E
   

         
  

q q  (32) 

For the problem considered, the system of equations (19) and (20) reads:   

 

2
2 2

0 2 1 2

1 1

1
2

2
,

E + Mgq c q q R

q λ
M

  
    

   
  (33) 
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2
2 2

0 2 1 2

2 2

1
2

2
,

E + Mgq c q q R

q λ
M

  
    

   
  (34) 

 

2
2 2

0 2 1 2

3 32

1
4

2
,

E + Mgq c q q R

q λ
MR

  
    

   
  (35) 

 
2 2
1 2

1 12 2 2
2 2 1 2

0 2 1 2

,
1

2
2

q q Rc
λ q

q q
E + Mgq c q q R

 


   
    

   

 (36) 

 
2 2
1 2

2 22 2 2
2 2 1 2

0 2 1 2

1
,

1
2

2

q q R
λ cq Mg

q q
E + Mgq c q q R

 
   

          
   

 (37) 

 3 0,λ   (38) 

where 1 2 3, ,
T

q q q   u .  

Further, based on (27), (28), and (29), the quadratic form (22) reads: 

 
 

2 2 2
1(0) 2(0) 32

0 2(0)

1 1 2 1
,

2
λ λ λ

M M E MgqMR
  


 (39) 

where, in accordance with (38), one has that 3( ) const.λ t   
Now, solving Eq. (39) for the multiplier 2(0)λ  yields: 

 
 

2 2
2(0) 1(0) 32

0 2(0)

2
,

2

M
λ λ λ

E Mgq R

 
    

  
 (40) 

and, for the system considered, Eq. (21) is reduced to the form: 

 *
1 1( ) 2( ) 1( )ψ cos 0.f f fλ λ q    (41) 

Finally, the TPBVP corresponding to the problem considered in this example is determined by Eqs. 

(33)-(38) and the boundary conditions (29), (30), (31), and (41). If TPBVP is solved by the shooting 

method [4], choosing the values (29), (40),
 1 0 1(0)( )λ t λ , and 3 0 3( )λ t λ  and solving Cauchy’s problem of 

Eqs. (33)-(38), the following dependences can be established in the numerical form:  

       *
1 1(0) 3 1 2 1(0) 3 2 3 1(0) 3 1Γ , , =ψ 0, Γ , , =ψ 0, Γ , , =ψ 0.f f fλ λ t λ λ t λ λ t    (42) 

The determination of all solutions of the TPBVP with this method requires the estimation of values of 

the multipliers 1(0)λ and 3λ where 0ft  . Hence, according to (39), the following estimations may be 

given: 
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1(0)

0 2(0) 0 2(0)

2(0)

0 2(0) 0 2(0)

2 2

3(0)

0 2(0) 0 2(0)

,
2 2

,
2 2

.
4 4

M M
λ

E Mgq E Mgq

M M
λ

E Mgq E Mgq

MR MR
λ

E Mgq E Mgq

  
 

  
 

  
 

 (43) 

On the other hand, solutions of the TPBVP may be determined in another way. Namely, now it is 

possible to determine the intersections of the surfaces (42) as:  

    1 1(0) 3 3 1(0) 3Γ , , Γ , , ,f f fp λ λ t λ λ t   (44) 

    2 1(0) 3 3 1(0) 3Γ , , Γ , , ,f f fr λ λ t λ λ t   (45) 

where fp and fr are the space curves represented by the following  dependencies established in  the 

numerical form: 

    1(0) 1(0), , , .f p f f r fp f λ t r f λ t   (46) 

Now, the solution of the TPBVP can be geometrically represented by the  crossing points of the curves 

(46) as: 

      1(0) 1(0) 1, , ,..., .p f r f rf λ t f λ t M M   (47) 

The number of elements of the set (47) is equal to the number of possible solutions of the TPBVP, while 

the coordinates of crossing points in the space  1(0) 3, , fλ λ t represent the TPBVP solutions. It should be 

pointed out that from the viewpoint of the ease of observation of the crossing points iM   and visual 

estimation of their coordinates, the method of crossing curves (46) is more convenient to use than the 

surface crossing method (42).  

Now, it is possible by applying the space curves crossing method (46) to perform the estimation of the 

values of coordinates  1(0) 3, , fλ λ t of all crossing points (47). The estimated values of coordinates 

 1(0) 3, , fλ λ t  of the crossing points can be used as initial iteration for finding accurate values of the 

quantities 1(0) 3,λ λ , and ft by applying the shooting method. 

In this paper, the implementation of the method of crossing of the curves (46) is achieved by using the 

built-in ContourPlot3D() Mathematica function (see e.g. [22]). The TPBVP is solved for the following 

values of the system parameters: 

 
2

0 2(0)2 2

kgm kN m
3500 , 3kg, 0.2m, 0.2 , 0.2m, 9.80665 .

ms s
E M R c q g       (48) 

In accordance with (43), the following global estimation of the  initial values of the corresponding 

multipliers can be given: 
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 1(0) 2(0) 30.0207 0.0207, 0.0207 0.0207, 0.0029 0.0029.λ λ λ         (49) 

In Fig. 2, the space curves (46) and the crossing points (47) are shown. By observing Fig. 2, it can be 

concluded that the TPBVP has not a unique solution.  

Visual estimation of the values of coordinates of the crossing points 1 2,M M , and 3M , respectively, from 

Fig. 2 are    0, 0, 0.1 , 0.015, 0, 0.15 , and  0.005, 0, 0.18 which represent the initial iteration for finding 

accurate values by applying the shooting method. 

 

All solutions are shown in Table 1. It should be stressed that all possible solutions of the TPBVP 

correspond to the values of the terminal time ft for which it holds *0 f ft t  , where * 0.1954sft  . The 

reason for this lies in the fact that for specified values of the multipliers 1(0)λ and 3λ and f ft t , the 

function 3ψ
  takes the infinite values. 

 

 

 

Fig. 2. Crossing of the curves  1(0) ,f p fp f λ t and  1(0) ,f r fr f λ t . 
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Table 1.The TPBVP solutions 

Solutions
 

 1(0) s / mλ   3 s / mλ   sft  

First solution ( 1M ) 0.006182  0.000677  0.09326  

Second solution ( 2M ) 0.013277  0.000545  0.150368  

Third solution ( 3M ) 0.006419  0.000534  0.187075  

 

Based on the values shown in Table 1, it can be concluded that the global minimum time for the 

brachistochronic motion of the disk in the vertical plane corresponds to the first solution (point 1M shown 

in Fig. 2) and it is 0.09326 sft  . In Figs. 3 and 4, the graphs of the state and control variables 

corresponding to the first solution  1M given in Table 1 are shown. 

 

 
 

Fig. 3. Graphs of the generalized coordinates corresponding to the first solution  1M . 
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Fig. 4. Graphs  of the optimal controls corresponding to the first solution  1M . 

 

In general, the brachistochronic motion of a mechanical system can be realized by means of the control 

forces, whose power is equal to zero. These control forces can be either active forces (see e.g. 

[25,26,27]) or reactions of additionaly imposed independent ideal stationary constraints to the system, 

which must be in accordance with the system’s brachistochronic motion (see e.g. [12,28]). The 

combinations of these types of control forces are also allowed. As in [12], the brachistochronic motion 

of the disk is realized by means of the fixed and moving centrodes of the disk [29,30,31]. The motion of 

the disk is equivalent to the rolling without slipping of the moving centrode on the fixed centrode at 

angular velocity equal to the angular velocity of disk [29,30,31]. The immovable centrode implies the 

geometric locus of momentary centers of disk rotation relative to immovable plane , whereas the 

movable centrode means the geometric locus of momentary poles of disk velocity relative to movable 

plane . Although at any moment the momentary pole of velocities coincides with the momentary center 

of rotation, it should be taken into account that the momentary pole is the velocity of the point on 

movable plane , while the momentary center of rotation is the point of immovable plane.  

The parametric equations of the fixed centrode read [29,30,31]: 

 2 1
1 2

3 3

, ,
q q

x q y q
q q

     (50) 

and those of the moving centrode: 

    1 3 2 3 1 3 2 3
3 3

1 1
sin cos , cos sin .ξ = q q q q η= q q q q

q q
   (51) 

The fixed and moving centrodes for the positions of the disk corresponding to the time instances 0 0t   

and ft  as well as the trajectory of point C are shown in Figs. 5, 6, and 7. 
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Fig. 5.  Centrodes and the trajectory of point C corresponding to the first solution  1M . 

 

 

Fig. 6. Centrodes and the trajectory of point C corresponding to the second solution  2M . 
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Fig. 7. Centrodes and the trajectory of point C corresponding to the third solution  3M . 

 

5.  Conclusions 
 

In this paper, a method for determination of the global minimal solution for the brachistochronic motion 

of holonomic scleronomic conservative mechanical systems with n degrees of freedom is presented. The 

method also includes an interesting way for estimating the values of the multipliers ( 1, )iλ i n . This is of 

great importance in the applications of the shooting method, because the multipliers ( 1, )iλ i n  usually 

have no physical interpretations, which implies difficulties in the estimation of their initial or terminal 

values. Our work is distinct from those enlisted in references, which consider the problem of 

determining costates values, because our work determines the upper and lower bounds of possible 

values of costates.   These estimations enable to relatively simply determine all possible solutions of the 

considered problem and thereby define the global minimum time.  In the case of systems with three 

degrees of freedom, the method allows for the geometric visual representation of possible solutions in 

the form of crossing of the curves in 3D space. Note that the approach from [12] developed for the 

variable-mass mechanical systems does not require the estimation of costates values. However, this 

approach is not suitable for determining the global minimum time for the brachistochronic motion of the 

considered mechanical system, because it does not allow for determining the upper and lower bounds of 

the values of state variables, which is necessary to do when determining the global minimum time.  
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