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Abstract

This article contains some comments on ”An exact dynamic stiffness method for multibody sys-
tems consisting of beams and rigid-bodies”, X. Liu, Ch. Sun, J.R. Banerjee, H-Ch. Dan, L. Chang.
Mechanical Systems and Signal Processing, 150, 107264 (2021).
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1. Introduction

In Section 3.1 of paper [1] authors use the example from Section 4.1 of our paper [2]. Namely,
considerations involve the elastic uniform hybrid beam composed of two elastic Euler-Bernoulli
beam segments of circular cross-section with the diameter D = 0.05 m and one rigid body in the
form of a thin rigid plate, as it is shown in Fig.1.
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Figure 1: Elastic beam carrying a rigid body
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The Young’s modulus and mass density of the beam segments are, respectively, E = 2.069 ×
1011 N/m2 and ρ = 7.8367 × 103 kg/m3 whereas the mass and the centroidal moment of inertia
of the rigid plate are, respectively, M = 15.387 kg and IC = 12.31 kgm2. Also, the geometrical
parameters shown in Fig. 1 have the following values: L = 2.6 m, L1 = 0.8 m, L2 = 1.2 m,
∆x1 = 0.4 m, ∆x2 = 0.2 m, and ∆y = 0.2 m. Note that C in Fig.1 denotes the mass center of the
plate. In [1], for the considered example, the first three dimensionless frequency coefficients were
obtained by using both the dynamic stiffness method and the finite element method (FEM), as it
is shown in Table 2 of paper [1]. In the same table the corresponding results from [2] are also
shown. Based on the results given in Table 2 of paper [1], authors of the mentioned work present
the following observations (see the first paragraph on page 12 in [1]):

”It can be clearly seen from the results in Table 2 that the theory of this paper is significantly
more accurate than the transfer matrix method (TMM) of Ref. [46] when compared with the FE
results using a very refined mesh. The error between the present theory and the FE results are
within 0.04% whilst the error between the TMM and the FEM is larger than 14%. The reason for
this is probably due to the fact that the transfer matrix method uses intensive matrix inversions one
after another, which introduce numerical problems leading to errors in the results.”

We cannot agree with the presented statements in [1] for the following reasons:

• In [1] it is taken that ∆y = 0.02 m, whereas in [2] the value ∆y = 0.2 m is used

• In [1] dimensionless frequency coefficients are calculated based on the expression λi =

4
√
ωi%AL2/(EI), whereas in [2] the expression λi = 4

√
ω2

i %AL4/(EI) is used. In Eq. (37)

instead of λ = 4
√

mω2L2/(EI) it should be λ = 4
√
%Aω2L4/(EI) (see [3, 4])

Also:

• In Eq. (29) instead of a2 = EA
l µcscµ it should be a2 = −EA

l µcscµ (see [3, 4])

Besides, in [1] not enough data is given on used parameters of the FEM model, especially on
the manner of creating a rigid plate in the framework of the FEM so as to check the values of the
frequency coefficients given in the fourth column of Table 2 in [1]. Further, confirmation of our
findings is given through verification of the frequency coefficients values obtained by the approach
given in [2] using the finite element package ANSYS.

2. Verification of the results by using the FEM

Figure 2 shows a dynamic equivalent model of the considered rigid plate that will be used
in the finite element analysis of the considered vibration problem. The presented rigid plate is
massless and three concentrated masses, m1 = m3 = 6.155 kg and m2 = 3.068 kg, are attached to
it at positions as it is shown in Fig. 2. In this way, the considered system composed of a massless
plate and concentrated masses has the same total mass, the same position of the center of masses
relative to the frame Oxy and the same centroid moment of inertia like the plate shown in Fig. 1.

Further, the finite element model of the considered system consists of 6119 elements and 18
662 nodes. It was made in Ansys Workbench software, version 2020R2. The solid elements
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Figure 2: A model of the rigid plate in the frame of the FEM

used for beams were BEAM3 and BEAM189 (in total 2064 elements have been created), while
element PLANE183 was used for modeling of the rigid plate (in total 4052 elements have been
created). Point masses were introduced using element MASS21. Calculations assume element
mass at element centroid. Fourteen modes were extracted using the eigenvalue extraction method
for natural vibration analysis based on a block Lanczos algorithm.

The values of the first three dimensionless frequency coefficients obtained by using the finite
element analysis are shown in Table 1. The same table also displays the percentage relative differ-
ence, ∆, between the FEM results and the corresponding results obtained in [2].

The quantity ∆ is determined by the following expression:

∆ =
λFEM − λ[2]

λFEM
× 100%

The results from Table 2 confirm the accuracy of our approach described in [2] and refute
above mentioned statements on accuracy presented in [1].

Table 1: The lowest three dimensionless frequency coefficients
λ1 λ2 λ3

[2] 2.81093 4.68603 6.99522

FEM 2.81078 4.67851 6.97587

∆ (%) 0.005 0.161 0.277
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