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Abstract— This paper deals with stability problem of inverted 
pendulum controlled by a fractional order PD controller. D-
decomposition method for determining stability region in 
controller parameters space is hereby presented. The D-
decomposition problem for linear systems is extended for linear 
fractional systems and for the case of linear parameters 
dependence. Knowledge of stability regions enables tuning of the 
fractional order PD controller.  

 
Index Terms— fractional order PID, D-decomposition, 

asymptotic stability, inverted pendulum.  
 

I. INTRODUCTION 

The inverted pendulum is one of the most interesting 
problems in control theory and has been studied through many 
researches in control community. It is nonlinear, unstable and 
underactuated system, and thus an excellent benchmark for 
testing different control algorithms. On the other hand, in 
recent years considerable attention has been paid to fractional 
calculus and its application[1,2]. In control theory fractional 
order controllers are used to improve the performance of 
closed loop systems. Among them, fractional order PID 
controllers are the ones most frequently used and were first 
introduced in [3,4]. It has been shown that fractional order 
PID controller enhances the system control performance when 
used with integer order and fractional order plants[5]. 

One of the basic requirements in control systems is their 
asymptotic stability. There are several methods for determining 
stability region of a closed loop system. D-decomposition is 
one of them. Using this method, parameter plane is 
decomposed by the so called boundaries of D-decomposition 
into finite number regions D(k). The region D(0), if existing, is 
the stability region, i.e. it guarantees the asymptotic stability of 
the closed loop system.  In this paper, D-decomposition 
method is applied to the inverted pendulum case, and 
determining its stability regions in parameters space of a 
fractional order PD controller is presented. D-decomposition 
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for linear fractional systems is investigated, and for the case of 
linear parameters dependence. This technique enables efficient 
computational method for determining the asymptotic stability 
region. When stability regions are known, tuning of the 
fractional order controller can be carried out. 

First, mathematical model of rotational inverted pendulum is 
presented. Then, a fractional order PD controller is introduced 
in order to stabilize the pendulum. Method for tuning the 
parameters of fractional order controller is given, using the 
abovementioned D-decomposition method. At the end, 
example is given and tests with different controller parameters 
are compared and analyzed in Matlab Simulink environment.  

II. MATHEMATICAL MODEL AND CONTROLLER DESIGN 

A. Mathematical model of Furuta pendulum 

In Fig.1 a schematic view of rotational inverted pendulum, 
also known as Furuta pendulum, is shown. It is a mechanical 
system with two degrees of freedom, where angular position of 
the arm and the pendulum are denoted as   and  , 

respectively. The arm is driven with a torque, while no torque 
is applied directly to the pendulum. Hence, it is an 
underactuated mechanical system because it has only one 
control input and two degrees of freedom. 

 
Fig. 1.  A schematic view of the Furuta pendulum 

 
Parameters of the system are: 1m - mass of the arm, 2m - 

mass of the pendulum, 1R - distance of the arm’s pivot point to 

the pendulum’s  pivot point, 2R - distance of the pendulum’s 

pivot point to its end (extreme), 12r , 22r - total length of the 

arm, and pendulum respectively, 1J - moment of inertia of the 

arm with respect to its center of mass, 2 2 2, ,J J J   -axial 

D-decomposition method for stabilization of 
inverted pendulum using fractional order PD 

controller 
Petar D. Mandić, Mihailo P. Lazarević, and Tomislav B. Šekara 

  
Proceedings of 1st International Conference on Electrical, Electronic and Computing Engineering 
IcETRAN 2014, Vrnjačka Banja, Serbia, June 2 – 5, 2014, ISBN 978-86-80509-70-9 
 

 

 
pp. ROI1.4.1-6 



 

moments of inertia of the pendulum with respect to its center 
of mass. 

Herein, the Rodriguez method is proposed for modeling the 
dynamics of the system where configuration of the mechanical 
model can be defined by generalized coordinates 1q  and 2q  

represent by  and  , respectively. The equations of motion of 

the inverted pendulum can be expressed in a covariant form of 
Langrange’s equation of second kind as follows [6,7]: 

 

 ,
1 1 1

1, 2
n n n

a q q q Q      
  

          (1) 

 
wherein the coefficients a  are the covariant coordinates of 

the basic metric tensor   2 2a R 
   and ,  , , 1,2     

presents Christoffel symbols of the first kind. The generalized 
forces Q  can be presented in the following expression (2), 

wherein ,g aQ Q  denote the generalized gravitational and 

control forces, respectively.  
 

 , 1, 2g aQ Q Q        (2) 

 
M  will denote external torque which is applied to the arm. 

The equations of motion of our system can be rewritten in full 
form: 

 

 2
11 12 12,1 22,12a a M           (3) 

 2
12 22 12,1 2

ga a Q       (4) 

wherein: 
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  (5) 

 
For simplicity, we introduce physical parameters 

1 2 3 4, , ,K K K K which are defined as shown above. 

B. Controller design 

In this section a control strategy is developed to stabilize the 
pendulum in upright position. This problem is usually divided 
into two different control problems. The first one is to swing 
up the pendulum from the down to the upright position, and it 
is usually solved with energy control strategies. Once the 
pendulum is close to the desired upright position, the swing up 
controller switches to balancing controller and stabilizes the 
pendulum. The swing up strategy will not be considered here 

since the goal of this paper is not building an accurate swing 
up controller, but stabilizing the pendulum and finding stability 
region by using fractional order PD controller. 

A nonlinear technique known as inverse dynamic control is 
used for pendulum stabilization. It is basically a partial 
feedback linearization procedure [8,9], which simplifies the 
control design. The first step of this procedure is to calculate 

  from (4) and plug it into (3). After rearranging, (3) now 
reads: 

 

 2 211 11 22
2 12,1 12 12,1 22,1

12 12

2ga a a
Q a M

a a

 
           

 
    . 

(6) 

We can see that  has been cancelled out in (6). Now, 
control input M can be chosen as follows: 

 

 2 211 11 22
2 12,1 12 12,1 22,1

12 12

2g
R

a a a
M Q a M

a a

 
           

 
    .  

(7) 
wherein RM  stands for new control input. Now, (3) and (4) 

become: 
 

 21 2 4

3 3 3

tan( ) 2 sin( )
cos( )

RK K K M

K K K
       


    (8) 

 RM   , (9) 

 
wherein physical parameters 1 2 3 4, , ,K K K K  are defined in (5). 

The control signal is defined in each position of the pendulum 
except for the horizontal, i.e. / 2   . Now, we can 

linearize system described with (8)-(9) around equilibrium 

point    , , , 0,0,0,0      . A controller derived from a 

linearized system will work for a nonlinear system, provided 
that region of attraction is not too large. Under this condition, 

linearization allows us to neglect nonlinear, quadratic term 2  
in (8). So, linearization around desired equilibrium point leads 
to: 
 

 1 4

3 3
R

K K
M

K K
    ,  (10) 

 RM  .  (11) 

 
If we only want to achieve asymptotic stability for  ,  , a 

simple PD controller with the form R P DM K K      can 

be used. It stabilizes the inverted pendulum for each 
, 0P DK K   . However, it does not stabilize the arm. The 

reason for this is that underactuated systems such as inverted 
pendulum are difficult to implement full feedback 
linearization procedure. Therefore, the new goal is to improve 

RM  so that asymptotic stability for  , , ,     can be 



 

accomplished. To achieve this, an extended fractional order 
PID controller is proposed, as a generalization of the PID 
controller [10]. The control feedback law will be extended as 
follows: 

 

     1

4
R P D P D

K
M K K K K

K
 

            ,  (12) 

 
wherein , , ,P D P DK K K K     denote proportional and 

differential gains of the controller, and  ,  real 

differentiator parameters. After substituting (12) into (10) and 
(11), we obtain: 
 

 4 4 4 4

3 3 3 3
D P D P

K K K K
K K K K

K K K K
 

             ,  (13) 

 1

4
D P D P

K
K K K K

K
 

   

 
          

 
 .  (14) 

 
We can notice that the last term on the right side of (12) is 

introduced to cancel out term which contains   in (10). 

Taking 1  and 1   we obtain classical PD controller. Six 

parameters  , , , , ,P D P DK K K K       in (12) can be changed 

in order to achieve asymptotic or relative stability of closed 
loop system. The goal of this paper is to determine the 
influence of DK  and DK   parameters on asymptotic stability 

of system described with (13)-(14). 

III. D-DECOMPOSITION METHOD 

Using the classical D-decomposition method [11,12] the 

stability region in the parameter plane  ,D DK K   may be 

determined. The characteristic polynomial of the closed loop 
system described with (13)-(14) is given by: 

 

 
 

4 2
4 3 1 3

2
4 3 1 4 1 3

(s) s

        

D D D

P P P

f s K K s K K s K K s K

s K K K K K K K K K

  
  

  

    

   
.  (15)                 

 

The plane  ,D DK K   is decomposed by the boundaries of 

the D-decomposition into finite number regions D(k). Any 
point in D(k) corresponds to such values of DK   and DK   that 

polynomial (15) has exactly k zeroes with positive real parts 
[13,14]. The region D(0) represents the stability region. The 
stability boundaries are curves on which each point 
corresponds to polynomial (15) having zeroes on the 
imaginary axes[15]. It may be the real zero boundary, the 
complex zero boundary, or the singular line [16].  

Real zero boundary is defined by the equation (0) 0f  . It 

is easy to see that that polynomial (15) has no zero 0s   if 
0PK   , which will be the case in this paper. The complex 

zero boundary corresponds to the pure imaginary zeroes of 

(15). We obtain this boundary by solving the equation: 
 

      

 

4 2
4 3 1 3

2
4 3 1 4 1 3 0

D D D

P P P

w w K K jw K K jw K K jw K

w K K K K K K K K K

  
  

  

  

    
  

(16) 
which we get by substituting s jw  in polynomial (15) and 

equating it to 0. The complex equation (16) can be rewritten 
as: 
 

    ( ) , , , , 0,f jw u w jv w        (17) 

 
where  , ,u w    and  , ,v w    denote the real and 

imaginary part of (16). Terms  jw


 and  jw


 which are 

required for (16) can be expressed as [17,18]: 
 

       cos 2 sin 2 ,   0jw w j w
        (18) 

 
Then, equating the real and imaginary part of (17) to zero, 

one obtains the following 2-D system: 
 

 
   
   
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1 2 2
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, , , , ( )
D

D

KU w U w Q w
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


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     
    
   

  (19) 

 
wherein 
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Q ( ) 0.
P P P
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U w w
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w









  

  

  

  

  





 

 



 



    



  (20) 

 

Solving it for parameters  ,D DK K  , we obtain: 

 

 ,   ,D DK K 
 


 
 

  (21) 

wherein 
 

 
   
   

1 2

1 2

, , , ,
,

, , , ,

U w U w

V w V w

   
   

    (22) 

 
 

 
 

2 11 1

2 1

, , , ,( ) ( )
,   .

, , , ,0 0

U w U wQ w Q w

V w V w 

   
   

      (23) 

 
It can be easily shown that: 
 

    2 2 sin(0.5 )aw b w          (24) 



 

For 0  , (21) describe a curve in the  ,D DK K   plane 

representing the complex zero boundary, for the fixed values 
, ,P PK K    and  , as w  runs from 0  to  . In crossing this 

curve, two roots move from one half plane to another.  
Now, a more detailed analysis must be done when 0  . It 

follows from (24) that this is true for 0w   or 
, 0, 2, 4,k k        . For the first case when 0w  , 

(20) can be written as:  
 

 
   
   

1 2 1

1 2 2

0, , 0,  0, , 0,  Q (0) b ,

0, , 0,  V 0, , 0,  Q ( ) 0.

PU U K

V w

   

   

   

  
  (25) 

 
It follows from (19) and (25) that 0 b PK   . This cannot 

be true for 0PK   , so the system (19) have no real solutions 

when 0w  . In the second case, 0   for ,k    

0, 2, 4,k     . The fractional orders   and   are in the 

range from 0 to 1, and therefore it follows 0.   Now, for 

  , (20) reads: 
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




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
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  (26) 

 
Equation (19) can be rewritten as: 
 

 
 2 2

4 2

cos(0.5 )

( ) b ,

D D

P P P

w aw b K w K

w w aK K b a K


 

  

     
   

  (27) 

  2 2 0.D Daw b K w K      (28) 

 
which leads to: 
  

 4 2( ) ( ) b 0.P P Pd w w w aK K b a K          (29) 

 
Frequency sw  for which ( ) 0sd w   determines singular 

line. In this case 0       , and D-decomposition 

contains not a point, but a whole line. This singular line can 
be obtained from either (27) or (28), and it reads: 

 

 
2D D
s

b
K a K

w 

 
   

 
  (30) 

 
Equations (21) and (30) determine the stability boundaries 

in parameter space  ,D DK K   for the fixed values 

, ,P PK K    and  .  

IV. SIMULATION RESULTS 

In this section, simulation results of system described with 
(13)-(14) are presented. Using the D-decomposition method, 

parameter space  ,D DK K   can be divided into stable and 

unstable regions. The stable region can be found by checking 
one arbitrary test point within each region, and testing the 
stability of polynomial (15) using the inverse Laplace 
transformation. In this paper, only the stability region D(0) is 
presented. 

Physical parameters 1 2 3 4, , ,K K K K  are defined in (5) and 

are taken from the real laboratory model of Furuta pendulum. 
They have the following values: 1 6.514 2,K e   

2 9.186 4,K e   3 1.428 3,K e   and 4 1.837 3K e  . Also, 

controller gains PK   and PK   are predetermined and chosen 

as: 0.0219,   41.48P PK K    . Now, the influence of 

 ,D DK K   parameters on stability property of system can be 

investigated using the D-decomposition approach. For the 
case  0,1 ,   1,    stability regions are plotted as shown 

in Fig. 2. 
 

 
 

Fig. 2.  Stability regions for  0,1 ,   1.     

 

By varying   and repeating the D-partition procedure, 
different stability regions are obtained. The global stability 
region can then be visualized in a 3D plot as shown in Fig.3. 
It can be seen from these figures that larger values of   
provide bigger stability region. For 1   stability region is 
determined with following singular lines: 

 
 267.2 ,   9.11D D D DK K K K         (31) 

 
Based on Lyapunov’s indirect method theorem [5], we can 

draw the conclusion about stability of the nonlinear system by 



 

 
 

Fig. 3.  3D Stability regions for  0,1 ,   1.    
 
investigating the stability of its linearized model. In other 
words, stability regions obtained in above examples for the 
system (10)-(11), will be the same as for the nonlinear 
system (8)-(9), but only in the small area of the equilibrium 
point.  

By varying   parameter while   remains constant, 

following stability regions are obtained, as shown in Fig. 4. 
 

 
Fig. 4.  Stability regions for  0.1,1 ,   0.1.     

   
3D representation of above figure can be seen in Fig. 5. 
 

 
Fig. 5.  3D Stability regions for  0.1, 1 ,   0.1.    

 
In these figures, the values of   are taken in the range 

(0.1,1] for better visibility. As mentioned earlier, the 

stability region D(0) in all examples is chosen by testing an 
arbitrary point and checking the stability of polynomial (15). 
Herein, an example of the aforementioned procedure will be 
shown. In Fig. 6 three different points for 0.7,   1    

are chosen and tested using the impulse response. All 
simulations presented are performed using Matlab software.  

 

 
 
Fig. 6.  Stability region testing. 
 

Points are marked as a, b and c. As we can see, points c 
lies outside the stability region. System whose parameters 

 ,D DK K   are determined by point b should be stable, 

while the one with point a should be on the stability margin. 
Impulse response of 1 (s)f  for each depicted point is 

obtained using the inverse Laplace transformation. The 
results are shown in Fig. 7. 

 

 
 
Fig. 7.  Impulse response for points a, b and c. 



 

Impulse responses are as we expected, which confirms 
that D-decomposition procedure is well derived and stability 
domain is properly chosen. 

V. CONCLUSION 

In this paper, the stability problem of Furuta pendulum 
controlled by fractional order PD controller is given. 
Mathematical model of rotational inverted pendulum is 
derived and fractional order PD controller is introduced in 
order to stabilize it. The problem of asymptotic stability of 
closed loop system is solved using the D-decomposition 
approach. On the basis of this method, analytical forms 
expressing the boundaries of stability regions in the 
parameters space were determined. The D-decomposition 
technique is extended for linear fractional order systems and 
for the case of linear parameter dependence. An example is 
given and tests are made in order to confirm that stability 
domains are well calculated. Knowledge of these stability 
regions enables tuning of the fractional order PD controller. 

More detailed analysis of D-decomposition technique for 
fractional order systems will be a subject of future research. 
Also, a transfer from simulation to real laboratory model of 
inverted pendulum will be considered.  
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