
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tnst20

Journal of Nuclear Science and Technology

ISSN: 0022-3131 (Print) 1881-1248 (Online) Journal homepage: https://www.tandfonline.com/loi/tnst20

Balance of Liquid-phase Turbulence Kinetic Energy
Equation for Bubble-train Flow

Milica ILIĆ , Martin WÖRNER & Dan Gabriel CACUCI

To cite this article: Milica ILIĆ , Martin WÖRNER & Dan Gabriel CACUCI (2004) Balance of
Liquid-phase Turbulence Kinetic Energy Equation for Bubble-train Flow, Journal of Nuclear Science
and Technology, 41:3, 331-338, DOI: 10.1080/18811248.2004.9715492

To link to this article:  https://doi.org/10.1080/18811248.2004.9715492

Published online: 07 Feb 2012.

Submit your article to this journal 

Article views: 511

View related articles 

Citing articles: 3 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tnst20
https://www.tandfonline.com/loi/tnst20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/18811248.2004.9715492
https://doi.org/10.1080/18811248.2004.9715492
https://www.tandfonline.com/action/authorSubmission?journalCode=tnst20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tnst20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/18811248.2004.9715492
https://www.tandfonline.com/doi/mlt/10.1080/18811248.2004.9715492
https://www.tandfonline.com/doi/citedby/10.1080/18811248.2004.9715492#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/18811248.2004.9715492#tabModule


Balance of Liquid-phase Turbulence Kinetic Energy Equation

for Bubble-train Flow

Milica ILIĆ�, Martin WÖRNER and Dan Gabriel CACUCI

Forschungszentrum Karlsruhe, Institut für Reaktorsicherheit, P.O. Box 3640, 76021 Karlsruhe, Germany

(Received July 18, 2003 and accepted December 1, 2003)

In this paper the investigation of bubble-induced turbulence using direct numerical simulation (DNS) of bubbly
two-phase flow is reported. DNS computations are performed for a bubble-driven liquid motion induced by a regular
train of ellipsoidal bubbles rising through an initially stagnant liquid within a plane vertical channel. DNS data are
used to evaluate balance terms in the balance equation for the liquid phase turbulence kinetic energy. The evaluation
comprises single-phase-like terms (diffusion, dissipation and production) as well as the interfacial term. Special em-
phasis is placed on the procedure for evaluation of interfacial quantities. Quantitative analysis of the balance equation
for the liquid phase turbulence kinetic energy shows the importance of the interfacial term which is the only source
term. The DNS results are further used to validate closure assumptions employed in modelling of the liquid phase
turbulence kinetic energy transport in gas–liquid bubbly flows. In this context, the performance of respective closure
relations in the transport equation for liquid turbulence kinetic energy within the two-phase k–" and the two-phase k–l
model is evaluated.

KEYWORDS: bubble-induced turbulence, turbulence kinetic energy, direct numerical simulation, bubble-
train flow, turbulence modelling

I. Introduction

While the modelling of turbulent single phase flows has
already reached a certain level of maturity, models for the
turbulence in bubbly flows are still under development. In
approaches currently used turbulence of gas phase is com-
monly neglected and only the one in the liquid is modelled.
For this purpose the respective transport equations of the
well-established single-phase turbulence models are extend-
ed with more or less empirically established closure terms
that account for interfacial effects (more details are given
in Chap. V). As it is not clear whether/how far the closure
assumptions originally developed for single phase flows
can retain their validity when the dispersed phase is present,
such an approach might be argued as highly uncertain.

Most of the difficulties faced in the development of im-
proved turbulence models for bubbly flows concern the poor
understanding of mechanisms in which bubbles alter turbu-
lence generation, redistribution and dissipation in the liquid
phase. Analytically, these mechanisms were rigorously for-
mulated by the derivation of basic balance equations for tur-
bulence kinetic energy1) and Reynolds stresses2) in gas–liq-
uid flows. Although known for more than a decade these
equations could not be exposed to an appropriate quantita-
tive analysis, because highly resolved data on the flow field
and phase interface structure required for such an analysis
have not been available.

Recent improvements in computer performances and pos-
itive experience from single phase flows suggest use of di-
rect numerical simulations (DNS) for solving these prob-
lems. Based on computational grids fine enough to resolve

all flow scales and auxiliary algorithms to track the gas–liq-
uid interface, DNS of bubbly flow provides the full informa-
tion on instantaneous three-dimensional flow field and phase
interface topology. In spite of serious limitations concerning
the magnitude of Reynolds number of the liquid flow and
number of bubbles that can be tracked, DNS opens a new
promising way to get a detailed insight into mechanisms
governing the turbulence in bubbly flows. Namely, in vari-
ous industrial processes involving slow dispersed two-phase
flows no shear turbulence occurs and the main flow features
such as phase distribution and mixing are controlled only by
agitation of the liquid phase by moving bubbles. This agita-
tion is called bubble-induced turbulence (BIT). Important in-
formation on the phenomenon of BIT can be obtained mon-
itoring the effects of the dispersed phase on well investigated
single phase flows with low Reynolds numbers. Among
these, the simplest case concerns studying fluctuations of
the liquid phase quantities induced by injection of gas bub-
ble(s) into originally stagnant liquid.

This paper reports the use of DNS in statistical analysis of
BIT. DNS are performed for a bubble-driven liquid motion
induced by a regular train of ellipsoidal bubbles rising within
a plane channel. Based on results of the DNS a quantitative
analysis for the balance equation of liquid phase turbulence
kinetic energy (kL) is performed. The paper is organised as
follows. In Chap. II an outline of the methodology employed
to perform DNS of the bubble-train flow is presented. Fur-
ther, geometrical and physical parameters of the present nu-
merical experiment are given. Chapter III deals with theoret-
ical considerations of the exact kL equation. The methodolo-
gy used for the evaluation of balance terms in this equation
and corresponding results obtained using DNS data on the
bubble-train flow are presented in Chap. IV. In Chap. V
the validity of closure assumptions in modelled form of kL
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equation employed in both the two-phase k–" and the two-
phase k–l model is tested against respective balance terms
in the exact kL equation. The paper is completed by conclu-
sions.

II. Direct Numerical Simulation of Bubble-train
Flow

1. Governing Equations
The direct numerical simulations are performed with our

in-house computer code TURBIT-VoF.3) The code is based
on a single set of balance equations that express the conser-
vation of mass (Eq. (1)) and momentum (Eq. (2)) for an in-
compressible isothermal flow of two immiscible Newtonian
fluids:4)

r�u ¼ 0 ð1Þ

@ð�uÞ
@t

þ r�ð�uuÞ ¼ �rpþ
1

Reref
r��

�
ð1� f ÞE €ooref

Weref

g�

jg�j
þ

�ain

Weref
n:

ð2Þ

The above equations are given in non-dimensional form. The
following scaling applies: distance, x¼x�=L�ref , velocity,
u¼u�=U�

ref , time, t¼t�U�
ref =L

�
ref , density, �¼��=��L, viscosi-

ty, �¼��=��
L and pressure, p¼ðp����Lg

��x�Þ=ð��LU�2
ref Þ.

The superscript � indicates a dimensional variable, while
L�ref and U�

ref are reference length and velocity, respectively.
As a result of scaling reference Reynolds number,
Reref¼ ��LU

�
refL

�
ref =�

�
L, reference Weber number, Weref¼

��LL
�
refU

�2
ref =�

�, and reference Eötvös number, E €ooref¼
ð��L���GÞjg�jL�2ref =��, appear in the momentum equation. In
Eq. (2) � is the stress tensor given by �¼�ðruþruT Þ. Sub-
scripts L and G indicate the liquid and gas phase, respective-
ly. Surface tension is denoted with �� and gravity with g�.
The last term in Eq. (2) expresses the contribution of the sur-
face tension force. There, � is twice the mean interface cur-
vature, n¼nG¼�nL is the unit normal vector to the interface
pointing from the gas into the liquid and ain is the interfacial
area concentration.

To distinguish between phases the liquid volumetric frac-
tion, f , is introduced. Therefore, a cell is filled with liquid
when f¼1 or with gas when f¼0. If 0<f<1, an interface ex-
ists within a cell. In such cells the model of a homogeneous
two-phase mixture is employed, i.e. the equality of phase ve-
locities and pressures is assumed. The density and viscosity
are expressed as: �¼1þð1�f Þ��G=��L and �¼1þð1�f Þ��

G=
��
L, respectively.
Phase interface evolution is tracked employing the trans-

port equation for the liquid volumetric fraction:

@f

@t
þ r�ð fuÞ ¼ 0: ð3Þ

Equation (3) is solved employing a Volume-of-Fluid proce-
dure.3) This procedure involves two steps. In the first one the
interface orientation and location within each mesh cell is re-
constructed using PLIC (Piecewise Linear Interface Calcula-
tion) method EPIRA that locally approximates the interface
by a plane. In the second step the liquid fluxes across the

faces of the mesh cell are computed. The methodology is
verified comparing numerical results with experimental data
for the rise of an ellipsoidal bubble (E €ooB¼3:07,
M¼3:1�10�6) and an oblate ellipsoidal cap bubble
(E €ooB¼243, M¼266).

2. Numerical Setup
Direct numerical simulations are performed for a two-

phase mixture with a simple flow pattern that is called ‘reg-
ular bubble train’. The term regular bubble train indicates a
quasi-steady flow where bubbles rise with the same velocity
through the channel whose length is much larger than its hy-
draulic diameter. Bubbles have an identical shape and are
uniformly distributed along the channel. In such a situation
a unit cell containing one bubble can be extracted (Fig. 1),
that fully characterises the entire bubble-train flow. Taking
the dimensions of the computational domain equal to the
size of the unit cell, the simulation of the bubble-train flow
can successfully be performed keeping the domain fixed
and letting bubbles move through it.

The computational domain in our DNS is prescribed to be
a cube of non-dimensional size 1�1�1. The domain is dis-
cretized by 643 uniform mesh cells. Boundary conditions are
no-slip ones at the lateral rigid walls (x3¼0 and x3¼1) and
periodic ones in vertical (x1) and span-wise (x2) direction.
In this way an infinite number of bubble-trains shifted in lat-
eral direction is simulated. The following parameters are
specified: reference length L�ref¼4m, reference velocity
U�

ref¼1m/s, density ratio �G
�=�L

�¼0:5, viscosity ratio
�G

�=�L
�¼1, bubble Eötvös number E €ooB¼3:065, and Mor-

ton number M¼3:06�10�6. According to these values refer-
ence dimensionless numbers are: E €ooref¼49:05, Weref¼2:5
and Reref¼100.

Initially a spherical bubble with the diameter Db¼0:25 is
positioned in the middle of the channel filled with stagnant
liquid. Using the time step width �t¼0:0001 in total
65,000 time steps are computed. Within this time the gas-liq-
uid system has reached a quasi-steady state, where the mean
velocity of the liquid phase and the bubble rise velocity can
be considered as approximately constant. The shape of the
bubble is steady, an axisymmetric ellipsoid with the axis as-
pect ratio 1.635 (see Fig. 2). Bubbles rise along an almost
rectilinear path.

g

x 1

1

1

1

x 2

x 3

Fig. 1 Geometry of the computational domain
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III. Balance Equation of Liquid Turbulence Kinetic
Energy

Among various turbulence quantities we chose to deal
with the liquid phase turbulence kinetic energy because this
quantity plays an important role in turbulence models for
bubbly flows (see Chap. V). Under the assumption of incom-
pressibility the non-dimensional liquid phase turbulence ki-
netic energy is defined as:

kL ¼ u
02
L =2:

For gas–liquid flows, liquid phase turbulence kinetic ener-
gy generation, dissipation and transport as well as its inter-
play with flow parameters such as velocity field, phase dis-
tribution and interfacial structures is mathematically describ-
ed by the following balance equation:1)

@

@t
ð�LkLÞ þ r�ð�LkLuLÞ

¼
1

Reref
r�ð�L�0L�u0

LÞ � r �L p0Lu
0
L þ

1

2
u02
L u

0
L

� �� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

DIFFUSION

��Lu
0
Lu

0
L : ruL|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

PRODUCTION

�
1

Reref
�L�0L : ru0

L|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
DISSIPATION

þ
1

Reref
�0Lin � p0LinI

� �
�u0

Lin�nLinain|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
INTERFACIAL TERM

: ð4Þ

The following notation is used. Subscript in denotes liquid
phase quantities at the gas–liquid interface and �L is mean
liquid volumetric fraction defined via the characteristic func-
tion of the liquid phase, �L¼�L. The single overbar indi-
cates averaging. The double overbar denotes so-called

phase-weighted averaging. For an arbitrary physical quantity
AL, this averaging is defined as AL ¼ AL�L=�L. Fluctuating
parts of physical quantities are evaluated as A0

L¼AL � AL and
A0
Lin¼ALin�AL.
On the right-hand-side of Eq. (4) two distinctive groups of

terms appear. The first one is the group of terms associated
with the mean liquid volumetric fraction, �L. Except for be-
ing multiplied with �L, these terms are basically of the same
form as the ones involved in the single-phase turbulence ki-
netic energy equation, i.e. the diffusion, production and dis-
sipation term can be recognized. For this reason these terms
are called single-phase-like terms. The last term, that is asso-
ciated with the interfacial area concentration ain, represents a
source of liquid turbulence attributed to the presence of bub-
ble interfaces and is called interfacial term.

Equation (4) is derived based on the local instant formu-
lation of the mass and momentum conservation laws for
two-phase flow, i.e. no model assumptions are made. In this
context, Eq. (4) is called ‘exact’ kL equation in order to dis-
tinguish it from the modelled kL equation employed in turbu-
lence models.

IV. Evaluation of Balance Terms in the Exact kL
Equation

1. Averaging Procedure
In evaluation of the mean and fluctuating quantities only

the part of time signals representing the developed flow re-
gime is of interest. As in this regime the bubble velocity
changes slightly, the time interval �T¼5:5{6:35 during
which the bubble passed the computational domain five
times is considered when the time averaging is concerned.
Since the procedure of time averaging requires that respec-
tive quantities are available for all mesh cells at every time
instant, a problem of data storage appears. Namely, for the
time averaging within the time interval �T¼5:5{6:3 in total
8,400 full data sets should be stored. In order to check if this
problem can be avoided, the relationship that exists between
temporal and spatial averaging is examined in detail. This
examination has shown that the ergodic theorem is valid in
vertical (x1) direction and that the time averaging can suc-
cessfully be replaced with the averaging along vertical (x1)
lines. In the context of Eq. (4) the line averaging corresponds
to the variables denoted with single overbar. Note that the
characteristic function of the liquid phase, �L, is taken to
be equal to the local liquid volumetric fraction, f . In princi-
ple, for the line averaging it is sufficient to consider a single
instant in time within the fully developed flow regime. How-
ever, with the goal of getting smoother profiles evaluations
are performed for every 200th time step. In total 42 sets of
results based on line averaging are evaluated within the con-
sidered time interval �T and then the arithmetic mean of
these profiles is computed.

2. Evaluation of Liquid-phase Interfacial Quantities
While the raw data obtained by DNS of the bubble-train

flow are sufficient to evaluate the single-phase-like terms,
the evaluation of the interfacial term requires some addition-
al information. Namely, since the model of the homogeneous

Fig. 2 Visualisation of instantaneous bubble shape and velocity
field for plane x2¼0:5

In vertical direction velocity vectors are shown for every third
mesh cell.
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mixture is employed in cells containing interface, corre-
sponding DNS data on the velocity and pressure cannot be
used as representative liquid phase interfacial quantities.

The problem of determining the liquid interfacial pres-
sure, pLin, is solved assuming that it is equal to the pressure
in an adjacent cell which is fully occupied with liquid phase.

The procedure used for the evaluation of the velocity on
the liquid side of the interface, uLin, is more complicated
and is shortly outlined here. Since no phase change is con-
sidered, the phase interfacial velocities are equal: uLin¼
uGin¼uin. The velocity uin can be split into its tangential,
uin;t, and normal, uin;n, component:

uin ¼ uin;t þ uin;n: ð5Þ

The tangential component, uin;t, is defined to be equal to the
tangential velocity of a fluid particle lying at the interface.5)

As in our case interfacial cells contain two-phase mixture,
uin;t is assumed to be equal to the tangential component of
the mixture velocity, uin;t¼ut¼u�ðu�nLÞnL. The normal
component of the interfacial velocity is defined as:6)

uin;n ¼
@F=@t

jrFj
nL; ð6Þ

where Fðx; tÞ¼0 is the equation of the interfacial surface. In
TURBIT-VoF gas–liquid interface is for any time instant, t,
defined via the unit normal vector, nL, and a point lying on
the interface MðbÞ:

Fðx; tÞ ¼ ðb� xÞ � nL ¼ 0: ð7Þ

Since function Fðx; tÞ given by Eq. (7) is not explicit with
respect to time, the problem of determining @F=@t arises.
The procedure applied for solving this problem is as follows.
Consider two subsequent instants in time t0 and t0þ�t in
which the interfacial surface passes through the point
M0ðb0Þ and M1ðb0þ	xÞ, respectively, i.e. the surface equa-

tion satisfies: Fðb0; t0Þ¼0 and Fðb0þ	x; t0þ�tÞ¼0. If the
distance between M0 and M1 is small, the function
Fðb0þ	x; t0þ�tÞ can be expanded into a Taylor series. Ne-
glecting terms of the second and higher order in this expan-
sion and after some simple mathematical rearrangements,
one obtains

@F

@t
¼ �

1

�t
nL0�	x; ð8Þ

where nL0 is the unit normal vector at the time instant t0.

3. Balance of the Exact kL Equation for Bubble-train
Flow
In Fig. 3 wall-normal profiles of the balance terms on the

right-hand-side of Eq. (4) and of the volumetric gas fraction,
�G¼1��L, are presented for two span-wise positions. The
following can be observed.

Profiles of all the terms are symmetric with respect to the
channel axis. Non-zero values are noticed only in the central
part of the channel, i.e. in the domain where bubbles rise.
Strong gradients of the liquid phase quantities in the region
between the part of the channel through which bubbles move
and the one permanently occupied with the liquid phase
cause sharp peaks of all the terms at such locations. These
peaks are especially remarkable for the diffusion term. As
it is seen in Fig. 3, profiles of the mean gas volumetric frac-
tion, �G, are in the case of the bubble-train flow continuous,
but not continuously differentiable. Therefore, the peaks of
the balance terms are expected to be reduced in a bubbly
flow with smoother profiles of �G, e.g. when the case of a
bubble-swarm flow is considered.

The term that is called production, and in shear flows is
always positive, is negative here. Although this result may
seem surprising and bring into discussion the name of this
term, the physics lying behind it is easy to understand taking

Fig. 3 Wall-normal profiles of balance terms in Eq. (4) for two span-wise positions, x2
Legend: diffusion , production , dissipation , interfacial term . Dashed line represents out-of-balance. Solid

line represents mean gas volumetric fraction, �G.
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into account that the motion of the liquid phase is driven by
rising bubbles, i.e. that the energy in the liquid flow is trans-
ferred from the fluctuating velocity field caused by moving
bubbles to the mean flow.

Since the diffusion has no net contribution, but represents
the redistribution of turbulence kinetic energy over the flow
domain, the following can be stated. In the case of the bub-
ble driven liquid motion considered here the turbulence ki-
netic energy of the liquid phase is gained only by the inter-
facial term, while it is lost not only through the dissipation,
but also through the production term. This conclusion gives
rise to the importance of studying the interfacial term.

V. Exact vs. Modelled kL Equation

In engineering applications liquid phase turbulence in
bubbly flows is calculated using various statistical models.
Among these two approaches involve a modelled form of
the liquid phase turbulence kinetic energy equation: the
two-phase k–" model7–15) and the two-phase k–l model.16)

Modelled kL equation is in these models derived by an exten-
sion of the respective single phase equation with a model
term that accounts for the existence of gas-liquid interfaces.
The objective of this section is to perform scrutiny and val-
idation of closure assumptions adopted in the modelled form
of the kL equation employed in the two-phase k–" as well as
in the two-phase k–l model. In this context, both single-
phase-like and interfacial terms are evaluated using DNS da-
ta on bubble-train flow and results are compared with respec-
tive balance terms from the exact kL equation.

1. Validation of Closure Assumptions for Single-phase-
like Terms
The commonly used model for the production term is

based on the assumption that turbulent stresses are propor-
tional to the mean strain rate in the liquid phase:

� ¼ �Lv
eff
L ½ruL þ ðruLÞT � : ruL;

where v
eff
L denotes so-called effective viscosity. When the

two-phase k–" model is concerned, approaches used to eval-
uate v

eff
L can be classified into the following three groups:

– Only eddy viscosity evaluated by two-phase k–" model,
vk"L , is considered:

7,9,11,12,15)

v
eff
L ¼ C�k

2
L="L|fflfflfflffl{zfflfflfflffl}

vk"
L

:

– Beside vk"L molecular viscosity of the liquid phase, vL, is
taken into account:8,13,14)

v
eff
L ¼ C�k

2
L="L|fflfflfflffl{zfflfflfflffl}

vk"
L

þ 1=Reref|fflfflffl{zfflfflffl}
vL

:

– In addition to vk"L bubble-induced eddy viscosity, vBL , eval-
uated by model of Sato et al.17) is taken into considera-
tion:10)

v
eff
L ¼ C�k

2
L="L|fflfflfflffl{zfflfflfflffl}

vk"
L

þ 0:6�GDbjuRj|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
vB
L

:

In the above expressions for veffL the value of the coefficient
C� is 0.09 and uR¼uG�uL represents the mean relative ve-

locity between phases.
In two-phase k–l model16) effective viscosity, veffL , is using

coefficient 
1¼0:56 related to the two-phase mixing length,
lTP:

v
eff
L ¼ 
1 lTP

ffiffiffiffiffi
kL

p
|fflfflffl{zfflfflffl}

vkl
L

:

In this model lTP, defined as a sum of single phase mixing
length, lSP, and bubble-induced mixing length, lB, is used.
However, for our case of slow bubble-driven liquid motion
it was reasonable to neglect lSP. Further on, as bubbles move
in the central part of the channel, relation lB¼�GDb=3 pro-
posed for the core region of bubbly flow16) is considered.

The common closure relation for the diffusion term is, like
in single phase flows, based on the assumption that the dif-
fusion flux of kL is proportional to the gradient of kL.

DIFF ¼ r � ½�Lv
D
LrkL�:

While in all two-phase k–" approaches7–15) the diffusion co-
efficient is taken to be equal to the effective viscosity,
vDL¼v

eff
L , in two-phase k–l model16) it is given as:

vDL ¼ 0:5 Re�1
ref|ffl{zffl}

vL

þ
2 lTP
ffiffiffiffiffi
kL

p
|fflfflffl{zfflfflffl}

vkl
L

;

where 
2¼0:38.
Since the dissipation of the liquid turbulence kinetic ener-

gy, "L, is in the two-phase k–" model evaluated by a separate
transport equation, we considered only the closure assump-
tion adopted in the two-phase k–l model:16)

"L ¼ �1�Lk
3=2
L =lTP;

where the coefficient �1¼0:18.
Using DNS data on the bubble-train flow single-phase-like

terms are evaluated employing the closure assumptions pre-
sented in the text above and the results are presented in
Fig. 4. The following can be seen. According to all closure
assumptions for the effective viscosity, veffL , positive values
of production term are evaluated, that is opposite to the exact
one which is always negative. The diffusion term is strongly
underestimated when conventional single-phase approaches
for estimation of the diffusion coefficient (vDL¼vk"L , vDL¼
vk"L þvL and vDL/vklL ) are applied. One more argument for this
statement can be drawn from an analysis of the dissipation
term. Namely, although the two-phase k–l model underesti-
mated the dissipation, this underestimation is not so pro-
nounced as in the case of the diffusion. This means that
not only the mixing length in bubbly flows, lTP, should be
corrected, but also the way in which it is related to the eddy
viscosity, vklL . Implementation of Sato’s eddy viscosity, vBL , in
the diffusion coefficient did not improve modelling of the
diffusion term significantly.

2. Validation of Closure Assumptions for Interfacial
Term
In contrast to the modelling of single-phase-like terms,

where practically no specific two-phase closure assumptions
have been developed, various models for interfacial term are
proposed in the literature. An overview of these models is
given in Table 1. The following can be observed. In the de-
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velopment of closure assumptions for interfacial term bubbly
flows are generally considered to be drag dominated. Name-
ly, as it can be seen in Table 1, work of the drag force, WD,
is included in all models, while in models 2, 3 and 5 it is
even considered to be the only contribution. The evaluation
of WD is in models 2–5 based on the mean relative velocity,

uR, but in model 1 the terminal velocity of a single bubble,
UT¼1:41E €oo 0:25

ref We�0:5
ref , is used. The drag coefficient in mod-

els 1–4 is evaluated via:

CD ¼
2

3
E €oo

1=2
B

1þ 17:67�L
1:3

18:67�L
1:5

� �2

;

Fig. 4 Wall-normal profiles of single-phase-like terms at span-wise position x2¼0:492
Legend: exact term , k–" models with effective viscosity defined as: vk"L , vk"L þvL , vk"L þvBL and k–l model

. Solid line represents mean gas volumetric fraction, �G.
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while the constant value CD¼0:44 is used in the model 5.
Van Driest’s function, fw, used in model 1 is formulated in
the same way as in single phase flows. For the definition
of the coefficient Ct see corresponding reference.9) Non-drag
contributions,WND, are in model 1 included through an addi-
tional term that accounts for absorption of liquid phase tur-
bulence by bubbles, while in model 4 the work of the add-
ed-mass force is considered.

The performance of closure assumptions presented in
Table 1 for the case of bubble-train flow is illustrated in
Fig. 5 for two span-wise positions. Encouraging results con-
cerning modelling of interfacial term are obtained. Namely,
when the profiles of these terms evaluated from the model 4

are compared with the ones obtained according to the exact
expression, great discrepancies are not observed. All other
closure assumptions underestimated the magnitude of the in-
terfacial term. Comparison of forms of the model 4 and mod-
el 5 revealed the importance of the proper choice of the drag
coefficient, CD. Namely, although the ‘standard’ definition
of the work of the drag force used in model 4 is in model
5 multiplied with 1:44�L (what is here greater than 1), due
to inappropriate correlation for CD (valid for particulate Rey-
nolds number higher than 1,000) this model underestimated
interfacial term. Since the terminal bubble velocity, UT , is of
the same order of magnitude as the mean relative velocity,
uR, the underestimation of interfacial term by the model 1

Table 1 Closure assumptions for interfacial term in modelled kL equation

Reference
Interfacial term

Work of drag force, WD Other contributions, WND

Model 1 16) 0:075 �G

3

4
�
CD

Db

U3
T

� �
fw ��G

k
3=2
L

Db

Model 2 9)
3

4
�
�GCD

Db

juRj
uR�r�G

0:3Reref�L�G

þ2kLðCt�1Þ
� �

None

Model 3 10) 0:25�Lð1þC
4=3
D Þ�G

juRj3

Db

None

Model 4 12)
3

4
�G

CD

Db

juRj3
� �

1þ2�G

2�L

�G

DGuG

Dt
�
DLuL

Dt

� �
uR

Model 5 13) 1:44�L

3

4
�G

CD

Db

juRj3
� �

None

Fig. 5 Wall-normal profiles of interfacial term at two span-wise positions, x2
Legend: exact terms , model 1 , model 2 , model 3 , model 4 and model 5 (see Table 1). Solid line

represents mean gas volumetric fraction, �G.
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can be attributed to multiplication factor 0:075fw. Introduc-
tion of this correction for the work of the drag force is not
documented,16) but surprisingly when the closure assump-
tions in the modelled kL equation are derived by the same
group of authors,18) it is not taken into account. Our calcula-
tions confirm that the assumption of the drag dominance is
correct. Namely, both non-drag contributions, WND, given
in Table 1 turned out to be an order of magnitude lower than
the corresponding drag ones, WD. However, one should keep
in mind that we considered fully developed steady bubble
motion. In the case of non-steady bubble rise the contribu-
tion of the work of added-mass force might become impor-
tant.

VI. Conclusions

The present paper deals with the quantitative analysis of
the balance equation for the liquid phase turbulence kinetic
energy (kL equation) in gas–liquid bubbly flows. According
to this equation there are two governing mechanisms which
determine the turbulence characteristics. The first group of
terms is associated with liquid phase volumetric fraction
and includes turbulence energy diffusion, dissipation and
production. The other group is associated with the interfacial
area concentration and is peculiar to two-phase flow systems.

To provide the data for the analysis of the kL equation, di-
rect numerical simulations of a regular train of ellipsoidal
bubbles rising through an initially stagnant liquid are per-
formed.

The analysis of the budget of the liquid phase turbulence
kinetic energy reveals the importance of the interfacial term.
Namely, since the production term is found to be negative,
this term is the only source of turbulence kinetic energy.
In the diffusive term the contribution of the pressure correla-
tion is dominant.

The information on balance terms in the exact kL equation
is further used for scrutiny and validation of closure assump-
tions employed in the kL equation of two-phase k–" and k–l
models. As concerns the case of the bubble-train flow stud-
ied here, the conventional modelling of production and dif-
fusion terms totally fails: the production term predicted by
models is positive, while it should be negative and the diffu-
sive term is strongly underestimated. Taking into account
bubble-induced eddy viscosity by the model of Sato et
al.17) did not result in significantly better results. The interfa-
cial term evaluated using the model of Morel12) showed rath-
er good agreement with the exact one, while closure assump-
tions used by other authors did not perform well.

Finally, one can argue that the case of regular bubble train
considered in this paper is somewhat academic and that this
can be the reason why certain models do not perform well.
However, this flow configuration is convenient for develop-
ing the computational tool to perform the quantitative analy-
sis of the exact kL equation and the validation of closure re-
lationships employed in its modelled form. In future work
we intend to apply the presented methodology to the case

of liquid motion induced by a rising bubble swarm.
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JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY


