
 

  

Abstract—In this paper, we present the novel mobile robot 

perception system based on a deep learning framework. The 

hardware subsystem consists of an Nvidia Jetson Nano 

development board integrated with two parallelly positioned 

Basler daA1600-60uc cameras, while the software subsystem is 

based on the convolutional neural networks utilized for semantic 

segmentation of the environment scene. A Fully Convolutional 

neural Network (FCN) based on the ResNet18 backbone 

architecture is utilized to provide accurate information about 

machine tool models and background position in the image. FCN 

model is trained on our custom-developed dataset of a laboratory 

model of manufacturing environment and implemented on 

mobile robot RAICO (Robot with Artificial Intelligence based 

COgnition). 

 
Index Terms—Deep learning; Perception System; Mobile 

robot; Semantic Segmentation. 

 

I. INTRODUCTION 

Modern mobile robot sensors (e.g., cameras or lidars) 

provide a rich amount of data about the current state of the 

environment. However, the way the data is interpreted and 

transferred into useful information has been an active area of 

research in the last two decades. Deep learning, or more 

precisely, Convolutional Neural Networks (CNNs), represent 

one of the most promising methodologies that can enable 

mobile robots to understand and interact with their 

environment in a more sophisticated manner [1]. The main 

disadvantage of CNNs is the requirement for a substantial 

amount of computation power for real-time implementation. 

Fortunately, several modern single-board computers or 

hardware accelerators provide enough computing power to 

deploy low-weight CNNs for real-time implementation. 

The authors [2] developed the visual perception system 
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utilized for navigation in the indoor environment based on 

CNNs for scene classification. They deployed shallow CNN 

to achieve real-time mobile robot navigation within the 

environment in both dynamic and static conditions. The 

development of the CNN model capable of determining the 

3D physical properties of objects in the scene is presented in 

[3]. The authors propose using the learned properties to 

predict the outcome of the dynamic events in the environment. 

This type of perception system can be beneficial for mobile 

robots employed in highly dynamic environments. The 

authors of [4] developed a complex cleaning mobile robot 

perception system with two submodules, one based on 

Bayesian filtering of data from 2D lidar, 3D lidar, and RGB-D 

camera used for human detection and tracking, and the second 

one for obstacle and dirt detection based on two RGB-D 

cameras and 3D lidar sensor. In [5], the authors developed a 

perception system based on a monocular camera for data 

acquisition and SURF point feature extraction method 

integrated with neural extended Kalman filter for 

simultaneous localization and mapping of mobile robot’s 

position and orientation. Another promising methodology for 

developing perception systems for mobile robots is a 

cooperative perception [6], where the perception of one 

autonomous agent depends on the perception of other nearby 

agents. Camera information obtained by one mobile robot 

(agent) can be propagated to the others if their relative pose is 

estimated well. Moreover, the authors implemented the 

camera models that share information regarding pedestrian 

detection. The mobile robot developed with the aim to be 

applied for manufacturing purposes was proposed in [7]. Safe 

indoor navigation is provided by the perception system based 

on a 2D camera, 3D camera, laser scanner, ultrasonic sensors, 

and internal measurement unit. On the one side, safe 

navigation is provided by a laser scanner and ultrasonic 

sensors, while a 3D camera is used for the correction step in 

the Kalman filter state estimation. Moreover, the 2D camera is 

utilized for adaptive path planning by detecting lines on the 

ground. 

This work presents the novel semantic segmentation-based 

mobile robot perception system implemented on our own 

developed mobile robot RAICO. The modified ResNet18 

backbone architecture is integrated with RAICO’s sensory 

subsystem, which contains two parallelly positioned Basler 

daA1600-60uc cameras. The proposed perception system 

provides RAICO with the ability to safely navigate the 

laboratory model of the manufacturing environment by 

knowing the position of machine tools in the image plane. 
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The paper is structured as follows. Section two is devoted 

to a thorough explanation of the considered CNN model and 

its training procedure. The third Section describes the 

experimental results and perception system evaluation while 

concluding remarks are presented in the fourth Section. 

II. MOBILE ROBOT PERCEPTION SYSTEM 

The mobile robot perception system is developed with two 

parallelly mounted Basler daA1600-60uc cameras facing 

downwards with an inclination angle of 30° and a baseline of 

12.5 cm. The combination of mentioned cameras with Evetar 

M118B0418W lenses (4 mm focal length) provides a large 

angle-of-view of the scene, approximately W×H=84°×68°. 

The cameras are connected via USB3.0 to the Jetson Nano 

development board for image acquisition. The whole 

perception system is positioned on the top of the mobile robot 

RAICO (Fig. 1). 

 

 
 

Fig. 1.  Mobile robot RAICO with assembled perception system 

 

The main component of the perception system is the Fully 

Convolutional neural Network (FCN) used for semantic 

segmentation. To enable the processing in near real-time, the 

selected backbone is ResNet18 based network. The network is 

trained by utilizing our custom-developed dataset for semantic 

segmentation. Image data is acquired within the laboratory 

model of a manufacturing environment, while the 

segmentation masks are hand-labeled. The dataset consists of 

densely labeled images with four machine tool classes and the 

background class. The dataset contains 125 images divided 

for training and testing in the 80/20 ratio. The sample of the 

dataset is shown in Fig. 2. 

Hard data augmentation is carried out on the images used 

for training to improve neural network generalization. Mobile 

robot RAICO uses real-world noise-prone cameras that can 

significantly impact the accuracy of neural networks [8]. 

Therefore, the first augmentation is performed with Gaussian 

noise added to the images. Two Gaussian noise levels have 

been introduced for all the images used for training. The first 

level contains the noise with zero mean and variance in the 

range of 0.002-0.004, and the second one has a variance of 

0.002-0.011 (sample of image with Gaussian noise is shown 

in Fig. 3). 

 

 
 

Fig. 2.  Sample of the custom-developed dataset 

 

 
 

Fig. 3.  Image with Gaussian noise 

 

Besides the Gaussian noise procedures, we also applied 

three data augmentation procedures: (i) horizontal flips (10% 

of the images), (ii) random crops with a scale of 0.7 (10% of 

the images), and (iii) the complete image pixel intensities 

change in the range of 0.8-1.2 (10% of images); this 

procedure results in images with different illumination 

intensity levels, which can realistically occur during the 

different parts of the day. After data augmentation is done, the 

considered dataset contains 370 images used for training 

neural networks.  

The details about utilized architecture are presented in Fig. 

4. Different blocks of layers are presented with rectangles of 

different colors, while the parameters for those layers are 

presented within the rectangle. W represents the weight 

matrix dimensions, S is the stride value, and P represents the 

padding value. Convolution, BatchNormalization, and ReLU 

layers are presented with blue blocks. The green block 

presents the MaxPooling layer, while the convolution and 

BatchNormalization block is presented with the brown 
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rectangle. Finally, the adding layer in combination with the 

ReLU activation layer is presented with orange. Input images 

have 800×600×3 resolution, while the output semantic mask 

has the dimension of 19×25. The probabilities of the class 

prediction are calculated by utilizing the Softmax activation 

function (1), while the utilized loss function is Cross-entropy 

(2). 

 

 

1

i

i

y

i N y

i

e
s

e
=

=


 (1) 

 ( ) ( ), log
N

i ii
c s= −s c  (2) 

 

Where y represents the output vector of the neural network, i 

is the current element of the output vector, N is a total number 

of classes (and the number of elements in the output vector), si 

is the output of the softmax function for each element, c 

represents one-hot vector for the correct class of the current 

input vector, and  represents the loss function value. 

The training is carried out by PyTorch v1.6.0 with 

Stochastic gradient descend and the momentum of 0.9. The 

initial learning rate is η=0.01 with the changing schedule 

defined with (3): 
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It is important to note that current_epoch is enumerated from 

0 to (max_epoch – 1). For the experimental research presented 

in this paper, the maximum number of epochs is 30, while the 

mini-batch size is 4. Lastly, the regularization technique is 

utilized with a weight decay of 0.0001. Training is performed 

on Nvidia RTX 1660 GPU with 6GB of RAM.  

Since the Nvidia Jetson nano is an edge device with limited 

processing power (NVIDIA 128-core Maxwell GPU), the 

whole FCN network with encoder and decoder parts could not 

be implemented in real-time. Therefore, the authors propose 

to maintain the output of the backbone network and directly 

calculate the semantic mask with the output resolution instead 

of deconvolving that information to acquire prediction with 

the same resolution as input. Having that in mind, the output 

mask is considerably smaller in resolution than an input 

image. However, the achieved accuracy is entirely 

satisfactory. 

III. EXPERIMENTAL RESULTS 

We have trained the FCN-ResNet18 model on our custom-

developed dataset for semantic segmentation of laboratory 

model of a manufacturing environment. Moreover, the trained 

model is implemented in the perception system on the mobile 

robot RAICO. Two metrics utilized to analyze the 

generalization performance of the FCN-ResNet18 model are 

Global accuracy and Intersection over Union (IoU). The 

training results for each class, as well as for the whole dataset, 

are presented in Table I. 

 

 
 

Fig. 4.  Architecture of the FCN-ResNet18 model 
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TABLE I 

THE EXPERIMENTAL RESULTS OF THE SEMANTIC SEGMENTATION MODEL 

 

Accuracy 

measures 
Background M#1 M#2 M#3 M#4 

Global 

per-class 

accuracy 

[%] 

96.8  68.9 88.6 91.4 94.4 

Per-class 

IoU 
96.1 58.2 69.4 45.9 58.6 

Mean global accuracy =96.0 Mean IoU = 65.6 

 

As shown in Fig. 5, there is a significant class imbalance in 

the considered dataset, as in most semantic segmentation 

datasets. The dominant class in the images is the background. 

 

 
 

Fig. 5.  Class frequency in the custom dataset 

  

Having that in mind, the highest accuracy is achieved for 

the class with most samples, even though the authors have 

added the class weights that are inversely proportional to the 

class frequencies. Moreover, the worst results (for IoU metric) 

are achieved for Machine3 (M#3) since it is the smallest 

machine and therefore occupies the smallest percentage of the 

scene. Interestingly, global accuracy for M#1 is the smallest 

compared to all the other classes. The authors further 

investigated this occurrence and presented the overlay view of 

two test images and their semantic masks generated by the 

FCN network (Fig. 6). As it can be seen, the network 

misclassified half of the M#1 in the first image in Fig. 6. 

Furthermore, in the image with occlusions, part of the M#1 is 

misclassified and labeled as M#4.  

Achieved mean global accuracy is 96.0%, which is a 

promising result; however, the mean IoU measure of 65.6 is 

much more representative of the actual generalization 

capabilities of the FCN model.  

 

 
 

Fig. 6.  Test images overlayed with semantic maps 

To further test the accuracy of the trained network, the 

model is implemented on mobile robot RAICO and tested 

online by the real-time acquisition of images and their 

semantic segmentation. Fig. 7 presents few images acquired 

and segmented by the FCN model in a real-world scenario. To 

increase the effectiveness of the FCN model, it is transformed 

to an ONNX format and optimized by utilizing Nvidia 

TensorRT. 

 

 

 
 

Fig. 7.  Testing of implemented FCN model  
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From Fig. 7, it can be seen that the considered FCN model 

achieves acceptable accurate segmentation results, with minor 

errors on machines that are either far away, occluded by other 

machines, or only partially visible. Furthermore, the model is 

implemented with 11FPS, which is acceptable for a mobile 

robot with low-velocity profiles.  

IV. CONCLUSION 

This paper proposes the new perception system of mobile 

robot RAICO based on a Fully Convolutional neural Network 

with ResNet18 backbone architecture. Training of the neural 

network model is carried out on a custom-developed dataset 

for semantic segmentation of the laboratory model of the 

manufacturing environment. The perception system is 

integrated with the Nvidia Jetson Nano development board 

and two Basler dart cameras and configured as a standalone-

edge device. After the training procedure is completed, the 

model is implemented on the mobile robot RAICO, with the 

achieved accuracy measures of 65.6 for mean IoU and 96.0 

for the global accuracy. The implemented system works in a 

near real-time manner achieving approximately 11FPS. Future 

research directions could include creating a larger dataset with 

more classes of manufacturing entities, as well as developing 

a novel, faster architecture for semantic segmentation capable 

of running real-time on Jetson nano. 
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