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Abstract 

This paper presents a novel, simple, flexible and effective discretization method for linear 
non-rational systems including arbitrary linear fractional order systems (LFOS). The 
discretization algorithm relies on the direct integration in the complex domain and 
application of ARX (AutoRegressive eXogenous) model. Parameters of ARX-model are 
obtained by numerical inversion of Laplace transform from the set of input/output data 
from recorded step response to model of non-rational system. Numerical simulations of 
several representatives of LFOS (e.g. fractional order PID controller, fractional 
logarithmic filter, fractional oscillator etc.) are used to demonstrate the effectiveness of 
the proposed discretization method, both in the time and frequency domains. The 
obtained results indicate that the proposed ARX-based discretization method is adequate 
technique for obtaining digital approximation of LFOS. 

Key words: discretization, fractional order systems, AutoRegressive eXogenous model, 
model reduction, frequency and time domain 

1. Introduction

Fractional order systems (FOS) are dynamical systems whose properties are described by 
fractional-order models, characterized by differential equations with non-integer order 
differentiation and integrations. Nowadays, FOS are widely used to describe various 
physical phenomena. Considering fractional derivatives (and integrals) are able to model 
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the non-local and distributed effects, FOS are successfully applicable in natural and 
technical phenomena for modeling various processes exhibiting memory and/or non-
stationary effects. An account of recent application of FC can be found in [1-3], and 
theoretical aspects are elaborated in [4,5]. Fractional order models have more degree of 
freedoms than corresponding classical ones which implies that FOS are often more 
accurate and superior than integer order ones. Additional flexibility in the design process 
leads naturally to fractional order controllers (FOC). Common example is CRONE 
(Commande robuste d’ordre non-entier, Non-integer robust control) proposed by 
Oustaloup and coworkers [6,7]. Podlubny [8,9] proposed fractional generalization of PID 
controller, named as PIλDμ, where both first-order integral and first-order differential 
actions have been replaced by respective fractional counterparts. 

From the theoretical aspect, any FOS/FOC can be seen as a continuous time, linear 
infinite dimensional filter. Direct implementation of such filter is not possible causing 
need to find a finite-dimensional approximation of any FOC in general, and fractional 
differintegrators in particular. Nowadays, modeling, simulation and in the end 
implementation of the FOC is advanced and facilitated thanks to powerful modern digital 
computers. Precondition to implement FOC is obtaining discrete equivalent suitable for 
practical realization of the corresponding control laws, relatively low order with aim to 
equalize entirely continuous-time system over a wide frequency range. In addition, the 
fundamental system properties, such are steady-state gain and settling time, as well as 
basic properties in the frequency domain, must be preserved.  

Number of discretization schemes can be principally classified as either direct or indirect. 
Direct methods are generally based on approximation of the first-order derivative or 
integral and expansion of non-integer power of this approximation, which is then 
truncated. Direct method in [10] is based on power series expansion (PSE) of Euler 
operator, while in [11] Tustin operator is approximated with the continued fraction 
expansion (CFE). Several another direct discretization schemes are presented in [12-16]. 
In [17] Barbosa, Tenreiro, Machado, and Silva suggested a novel discretization method 
based on least-squares fitting in time domain. Indirect methods consists of two 
transformation stages. First stage comprises derivation a finite dimensional, continuous 
approximation of the considered FOS. Examples of these approximations are Oustaloup’s 
rational approximation (ORA) reported in [17], sub-optimum H2 rational approximation 
was reported in [2]. Simple and an effective approach for non-rational approximation of 
FOS was elaborated in [18]. Rapajić and al. [19] have been recently proposed efficient 
and simple, both conceptually and computationally for LFOS applicable to LFOS and 
arbitrary, linear, stationary, infinite dimensional models. Second stage implies derivation 
of discrete-time equivalent of previously found continuous-time approximation. 
Numerous of discretization methods have been proposed in literature to systems 
described by rational transfer functions: approximation of Euler and Tustin, step-invariant 
and impulse invariant transformations and others [20]. In [21] Smith proposed a flexible 
first order, known as T-integrator. Similar tunable first order discretization schemes were 
proposed by Le Bihan [22], Šekara et al. [23-24]. Efficient implementation of 
discretization alghorithms was discussed in [25], and both direct and indirect 
discretization alghorithms were elaborated in [26,27]. 
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The paper is organized as follows. In Section 2, the novel discretization method is 
elaborated. Section 3 presents several illustrative examples showing effectiveness of the 
proposed method. Finally, the paper is concluded in Section 4. 

2. Discretization method for linear fractional order systems

The discretization method we propose in the current paper consists of three main steps. In 
the first step, the response of the system to a specific test signal is obtained in the time-
domain. The response is evaluated by inversion of the appropriate Laplace transform 
expressions. The second step is to find an optimal, high-order ARX model describing the 
obtained response. It is important to note that approaches other than ARX could be used 
(for example ARMAX, Box-Jenkins, etc.), but for the sake of brevity and without loss of 
generalization we focus specifically on ARX models in the present work. The third and 
final step is to perform model reduction in order to obtain a more manageable pulse 
transfer function. Each of these steps will be elaborated in the remainder of this section. 
One possible approach to obtain a low-order approximation is to directly use low-order 
ARX fitting. However, this approach would lead to significant errors even in frequency 
ranges of interest. Order reduction, however, can be fine-tuned for the specific application 
at hand, and are in general more flexible. Thus, we chose the three step approach in the 
current paper. 

Step 1. There are a number of criteria for favorable selection of test signals used for 
process excitation. Among these we emphasize: simple generation and mathematical 
description, implementation with given actuators, applicability to the process and 
qualitative excitation of the interesting system dynamics [28]. In order to have signal with 
zero mean value in the proposed discretization procedure it is used one period of bipolar 
square wave as a test signal. The selected signal is defined as 

( ) ( ) 2 ( ) ( 2 )u t h t h t h t       (1)

where h(t) is Heaviside function and ∆ is time period which is determined on the basis of 
prior knowledge of the step response of the non-rational transfer function G(s). Laplace 
transform of the input u(t) is given by 
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and thus output y(t) can be calculated from inverse Laplace transform 
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Step 2. Measured signals are input u(t) to the LFOS and the output y(t). The input/output 
data used for estimation of parameters of ARX-model are obtained directly from the 
recorded step response by means of numerical inversion of Laplace transform. The 
interested reader is referred to [29]. Discretization of LFOS is based on the estimation of 
the parameters of a high order ARX model and reduction of the model order to an 
adequate degree by an appropriate technique. The ARX model structure is usually written 
in the compact form [30]: 
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Recorded set of input/output data, i.e. vectors u and y from (3) are incorporated in 
MATLAB and then used for determination of polynomials A(q) and B(q) from (4), using 
least-square parameter method according to [31]. It should be emphasized that, in this 
paper, fixed number of points N is used for determination of inverse Laplace transform in 
(3), over a selected interval of length Tm. Therefore, the corresponding period of 
discretization of ARX-model in (4) should be Ts=Tm/N. The overall dynamics of the 
model is collected by selection of high order degrees nA and nB of polynomials A(q) and 
B(q).  

Step 3. In general, the reduction of the model is performed in order to ease the 
computational efforts of simulation, analysis, design and at the end implementation of the 
LFOS. Reduction of the obtained ARX model, in this paper, is performed by 
transformation it into balanced state-space realization according to [32]. Primary idea in 
this approach is to retain only the most significant states of the model which determine 
the input-output behavior of the system. Finally, constructed reduced order ARX-model is 
thus represented by estimated transfer function returned for negative powers of discrete 
variable z which further can be written in rational transfer function as 
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where ,m n  and degrees m and n are selected from balanced state-space based ARX-
model reduction performed in (6), in order to equalize frequency and time domain 
characteristics of the LFOS and obtained discrete equivalent. Verification of effectiveness 
of the proposed method is done by comparison of the time and frequency responses of 
obtained discrete equivalent and process transfer function G(s). 

2. Simulation analysis

The effectiveness of the proposed discretization method is verified via numerical 
simulations for following transfer functions: 
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Processes with such a transfer function are studied in [26,27,33] which include typical 
fractional order process G1(s), fractional logarithmic filter G2(s), process G3(s) which is 
common in analysis of distributed parameter systems, particularly those involving heat 
and mass transfer; differential compensator G4(s), fractional order PID controller G5(s) 
and fractional oscillator G6(s). The obtained results are illustrated below in the form of 
frequency (Bode) and time responses in Fig. 1-6, while coefficients of the discrete 
equivalents are presented in Table 1.  

346



M. Bošković, T. B. Šekara, M. R. Rapaić, M. P. Lazarević, P. Mandić, 
A novel discretization method for linear fractional order systems based on ARX model 

Figure 1. Bode plots (left) and step response (right) for the process G1(s) (blue) and 

obtained discrete equivalent ARX

1
ˆ ( )G z  (red dashed) 

Figure 2. Bode plots (left) and step response (right) for the process G2(s) (blue) and 

obtained discrete equivalent ARX

2
ˆ ( )G z  (red dashed) 

Figure 3. Bode plots (left) and step response (right) for the process G3(s) (blue) and 

obtained discrete equivalent ARX

3
ˆ ( )G z  (red dashed) 
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Figure 4. Bode plots (left) and step response (right) for the process G4(s) (blue) and 

obtained discrete equivalent ARX

4
ˆ ( )G z  (red dashed) 

Figure 5. Bode plots (left) and step response (right) for the process G5(s) (blue) and 

obtained discrete equivalent ARX

5
ˆ ( )G z (red dashed) 

Figure 6. Bode plots (left) and step response (right) for the process G6(s) (blue) and 

obtained discrete equivalent ARX

6
ˆ ( )G z  (red dashed) 

348



M. Bošković, T. B. Šekara, M. R. Rapaić, M. P. Lazarević, P. Mandić, 
A novel discretization method for linear fractional order systems based on ARX model 

Table 1. Coefficients of transfer functions of the obtained discrete equivalent ARXˆ ( )G z  for 

the processes 1,6,
j

G j   for N=1000 and Ts=Tm/N 

Gi 
∆
[s] 

Tm  
[s] 

Coefficients of the ARXˆ ( ) ( ) / ( )G z B z A z

b6 b5 b4 b3 b2 b1 b0 
a6 a5 a4 a3 a2 a1 a0 

G1 20 60 
0.0048 -0.0089 -0.0103 0.0379 -0.0351 0.0130 -0.0016 

1 -5.3885 12.0357 -14.2513 9.4249 -3.2964 0.4755 

G2 30 100 
0.0349 0.3747 -1.1076 0.4992 0.8259 -0.8045 0.1772 

1 -5.3885 12.0357 -14.2513 9.4249 -3.2964 0.4755 

G3 30 100 
0.0004 0.0605 0.1203 -0.1147 -0.2295 0.0539 0.1090 

1 0.0987 -2.6859 -0.1942 2.3929 0.0953 -0.7066 

G4 1 3 
3.318 17.2421 39.2919 -47.4943 32.0825 -11.4674 1.6914 

1 -5.4811 12.6405 -15.0262 10.1271 -3.6118 0.5316 

G5 10 60 
12.036 -47.4483 78.3305 -74.6972 48.4545 -21.0921 4.4173 

1 -3.4287 4.9922 -4.3677 2.6635 -1.0385 0.1792 

G6 18 60 
- 0.0057 0.1498 -0.1170 -0.1648 0.1057 0.0217 
- 1 -1.0070 -1.8770 1.9000 0.8794 -0.8937 

As the figures 1-6 show, the proposed method gives adequate discrete equivalents for a 
wide range of LFOS.  As it can be seen from Table 1, obtained transfer functions G1-G5 
are of 6th order, and for G6 of 5th order. Compared to recently proposed discretization 
methods, reported in [18,19], where 7th order is obtained, the presented method is more 
flexible with easier construction of lower model order and preservation of continuous-
time characteristics in discrete-time domain. Obtained frequency characteristics for all 
examples of LFOS considered here, gives adequate results and can be easily processed by 
modern computers. It should be mentioned that all of the time-domain responses 
presented above are obtained by means of direct integration in the complex domain. For 
more information we refer to [29]. Besides, it should be pointed out that in this paper for 
discretization procedure the fixed number N=1000 has been chosen in order to decrease 
the computation error of inverse Laplace transform. However, another value of N could 
be used, by taking into account that sampling period Ts=Tm/N is than indirectly defined on 
the basis of selected values of Tm and N. 

It is important to note that there is a number of methods for rationalization and/or 
discretization of fractional and non-rational transfer functions. As it can be seen from 
frequency characteristics is that relative error percentage over a wide frequency range is 
less than 1%, while maximum relative error is corresponding to the Nyquist frequency. 
Full comparison with available methods with error bound computation of each step 
approximation is beyond the scope of the present paper and will be the subject of future 
research. An example, of how the approximation error can be considered to create 
uncertain order model is recently reported in [34]. However, it is worth stressing that the 
proposed method is more flexible and precise than most of other recently reported ones. 

3. Conclusions

The method proposed here is based on ARX-based parameter estimation of the model of 
the fractional order process previously excited by double rectangular pulse. The 
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parameters of ARX-model are obtained by means of numerical inversion of Laplace 
transform on the basis of the input/output data from recorded step response to the 
examined fractional order model. Obtained results presented here indicate that proposed 
ARX-based discretization method is adequate technique for discretizing LFOS. The 
method is characterized with computational efficiency, flexibility and effectiveness, as it 
is illustrated by numerous examples.  
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