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Abstract 
 An open-closed-loop P/PDalpha type iterative learning control (ILC) of fractional-order 
singular system is investigated. In particular, we discuss fractional-order linear singular 
systems in pseudo state space form. The sufficient conditions for the convergence in time 
domain of the proposed fractional-order ILC for a class of fractional-order singular 
system are defined by the corresponding theorem together with its proof. Finally, a 
numerical example is presented to illustrate the performance of the proposed factional 
order ILC. 

Key words: iterative learning control, open-closed-loop, singular system, fractional 
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1. Introduction

Iterative learning control (ILC) is one of the recent topics in control theories and it is a 
powerful intelligent control concept that iteratively improves the behavior of processes 
that are repetitive in nature [1,2,3]. Since the early 80’s, ILC [4,5] has been one of the 
very effective control strategies in dealing with repeated tracking control with the aim of 
improving tracking performance for the systems that work in a repetitive mode. For the 
purpose of emulating human learning, ILC uses knowledge obtained from the previous 
trial to adjust the control input for the current trial so that a better performance can be 
achieved. Namely, ILC is a trajectory tracking improvement technique for control 
systems, which can perform the same task repetitively in a finite time interval to improve 
the transient response of a system using the previous motion. Therefore, ILC requires less 
a priori knowledge about the controlled system in the controller design phase and also 
less computational effort than many other kinds of control. Besides, in terms of how to 
use  tracking error signal of the previous iteration to form the control signal of the current 
iteration, ILC updating schemes can be classified as P-type, D-type, PD-type, and PID 
type. A typical ILC in the time domain is a simple open-loop control (off-line ILC) and it 
cannot suppress the unanticipated, non-repeating disturbances. In real application, to 
overcome such drawbacks, an ILC scheme is usually performed together with a proper 
feedback controller for compensation [6], where we often design a learning operator for 
the closed-loop (on-line ILC) systems that have achieved a good performance. Since the 
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theories and learning algorithms on ILC were firstly proposed, ILC has attracted 
considerable interests [3] due to its simplicity and effectiveness of the learning algorithm, 
and its ability to deal with the problems associated with nonlinear, time-delay, 
uncertainties, and, recently, singular systems. During the past years, singular systems 
have attracted attention of a lot of researchers from the mathematics and control 
communities due to the fact that singular systems can describe the behavior of some 
physical systems better than regular systems such as: electrical network models [7], 
mechanical models [8,9], etc. Naturally, many theoretical results for regular systems have 
been extended to singular cases. It is well known that issues of concern for singular 
systems are much more complicated than those for regular systems, because for singular 
systems we need to consider not only stability, but also regularity and the absence of 
impulses at the same time [10]. Actually, elimination of algebraic constraints needs a 
suitable feedback control [11].  From the control point of view, it is also necessary to 
study the ILC for singular systems. Until now, there are few results reported on 
introducing ILC methods to studying of tracking control for singular systems [12,13]. 
Recently, increasing attentions are paid to fractional differential equations and their 
applications in various science and engineering fields [14,15]. Moreover, an increasing 
attention has been paid to fractional calculus (FC) and its application in control and 
modeling of fractional-order singular systems [16,17]. It is not difficult to conclude that 
other dynamic systems (robotic systems of fractional-order, etc.) [18] can be displayed in 
the singular form, especially in realization of various  robotic tasks. 

 Recently, the application of ILC to the fractional-order systems has become a new 
topic [19-22]. For the first time, in a paper [23] is considered a robust iterative learning 
feedback control of the second-order for fractional-order singular systems. The present 
paper considers open-closed-loop iterative learning control for given fractional-order 
singular systems described in the form of state space and output equations. The sufficient 
convergent conditions of the proposed ILC will be derived in time-domain and 
formulated by a theorem. Finally, the simulation results are presented to illustrate the 
performance of the proposed P/PDalpha ILC scheme. 

2. Preliminaries

2.1  The -norm, maximum norm, induced norm 
For later use in proving the convergence of the proposed learning control, the following 
norms for -dimensional Euclidean space  are introduced [1]:  
the sup-norm             , 

and maximum norm  ; 

the matrix norm as 

;
and  the  -norm for a real function: 
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sup : 0
Ax

A x X with x
x

     
  

,  (2) 

where  .  denotes an arbitrary vector norm. In case  .


 we have

Ax A x
  
  ,  (3) 

where  denotes the maximum value of matrix A. For the previous norms, note that 
( ) ( ) ( )Th t h t e h t

   .         (4) 
The norm is thus equivalent to the norm. For simplicity, in applying the norm 

 index  will be omitted. 
Before giving the main result, we will first give the following Lemma 1 [3]. 
Lemma 1.    Suppose that a real positive series  1na   satisfies  

 1 1 2 2 ... ( 1, 2,..., )n n n N n Na a a a n N N             ,  (5) 

where 0 ( 1, 2, ..., ), 0i i N     and
1

1
N

i
i

 


  . Then the following holds: 

  lim / 1nn
a  


  .  (6) 

2.2  Fractional integro-differential operators 
In this paper, Caputo fractional-order operator is used, where definition of the left Caputo 
fractional-order derivatives is given [14,15]  as follows: 
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     (7) 

where , , and  is the well-known Euler’s gamma 
function.  In the case  we have  as well as 
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2.3 Fractional-order autonomous linear singular system  

Consider the following autonomous, singular, fractional-order system (SFOS) described 
by the state equations 

( ), 1ED (t)= Ax t n n   x ,  (9) 
( ) ( ),t C ty x         (10) 

where admissible initial conditions for (9) are given by 
 ( )

0,0 0,1,2,... 1k
kx x k n   .  (11) 

Here, denotes the th-order Caputo fractional derivative with respect to t, while
, and C are matrices with appropriate dimensions [24]. In solving a singular problem, 

assuming regularity of the system, it is necessary to ensure the existence and uniqueness 
of the solution. 
Definition 1.  a) The SFOS system (9) is said to be regular if   det 0s E A   ,

b) The SFOS system (10) is said to be impulse free if (10) applies and
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  deg det s E A rankE   .  (12) 

Lemma 2.  The triplet  , ,E A  is called regular if and only if   det 0s E A    for some
 [24]. Also, if triplet   , ,E A   is regular, we call SFOS system (9) regular, and 

consequently SFOS system is solvable. 

3. Open-closed-loop fractional-order iterative learning control

3.1 The fractional-order non-autonomous  singular linear system 

 A non-integer (fractional) linear, singular system described in the form of pseudo 
state space and output equations is considered. The considered class of fractional-order 

non-autonomous singular linear system can be written as the state space equation 
and output equation 

( ) ( ), 0 1E D (t)= Ax t Bu t   x  (13) 
( ) ( ).t C ty x   (14) 

Here,  is the time within the operation interval , while , and C 
are matrices having appropriate dimensions. It is assumed that  and that SFOS 
system is regular. 

Also, the initial conditions of fractional differential equations which were compared to 
the given fractional derivatives were considered by different authors [24,25] assuming 
that there was no difficulty as regards the questions of existence, uniqueness, and 
continuity of solutions with respect to initial data. The following assumptions on the 
system (13), (14) are imposed. 
A1. The desired trajectories , (t) are continuously  differentiable in . 

A2. For the given desired output trajectory , there exists a control input such 

that ( ) ( ), 0 1d d dED (t)= Ax t Bu t   x  (15) 
( ) ( ).d dt C ty x  (16) 

A3. SFOS system is controllable and  observable. 
A4. Resetting the initial conditions holds for all iterations, i.e 

(0) (0), 0,1, 2...,k dx x k 

3.2 Convergence Analysis 

Here, for the singular system defined by (10), open-closed-loop P/PD-type iterative 
learning algorithm is proposed as follows: 

   1 1 2 0, 1 2 1( ) ( ) ( ) ( )i i i C t i iu t u t e t D e t e t
      ,  (17) 

where  iu t  and  iy t  are, respectively, the system input and output in the thi iteration,
  ( ) ( )i d ie t y t y t   is the trajectory tracking error at i  th iteration,  1iu t  is the system 

input of the  1 thi   trial,    d dy t Cx t  denotes desired output trajectory, and 1 2 2, ,  

are open-closed-loop learning matrices. In the closed loop, the PD  controller 
 2 0, 1 2 1( ) ( )C t i iD e t e t

    provides stability of the system and keeps its state errors within 

s  

 0,1 

t , ,o oJ t t T J R     ,A B
det 0E 

( )dy t dx  0,T

( )dy t  du t
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uniform bounds. A sufficient condition for convergence of the proposed open-closed- 
loop ILC is given by  Theorem 1. The proof as follows: 

Theorem 1: Suppose that the update law defined by (17) is applied to the non-
autonomous singular linear system (13), (14) and assumptions , 1, 2, 3, 4iA i  are satisfied. 
If matrix 2 , exist such that 

2 1,I CB        (18) 

where is   1
2B E B C B   and matrix 2 is such that   2E B C   is invertible, then, 

when the bounds of the tracking errors ( ) ( )d ix t x t ( ) ( )d iy t y t , ( ) ( )d iu t u t

converge asymptotically to a residual ball centered at the origin. 

Proof. Let     ( ) ( )( ) ( ), , , , , ( ) ( )i d i d d i i idh h t h t h x x u u f D h t h h t h t          .    (19) 

Tracking error can be obtained as follows: 

   

     ( ) ( ) ( ) ( )d ii i
de t y t y t C x t
dt


 


   .  (20) 

Taking the proposed control law gives: 
  ( )

1 1 1 2 1 2 1i d i i i i iu u u u e e e          ,  (21) 

or, taking into account (20) it yields: 
( )

1 1 1 1 2 1 2 2 1i d i i i i iu u u u C x C x C x                  .  (22) 
Also, from  (13), (15)  one can find that 

( )
1 1 1i i iE x A x B u      .  (23) 

Substitution of (22) into (23) results in 

    ( )
2 1 2 2 1 1i i i iE B C x A B C x B u B C x             .  (24) 

By using suitable gain matrix 2 , as well as by taking into account the previously 

introduced assumptions, matrix  2E B C   is invertible, i.e there exists   1
2E B C   . By 

multiplying  expression (24) by   1
2E B C   , we obtain (25) 

( )
1 1 1i i i ix A x A x B u       ,  (25) 

where are 
   1

2 2 2A E B C A B C      ,    1 1
2 1 2 1, .B E B C B A E B C B C          (26) 

By replacing (23) into (20), we obtain 

1 2 2 2 2 1 1 2 1i i i iu I CB u CA C x C CA x                        .  (27) 

By estimating the norms of (25) with  and using the condition of Theorem 1 one 
obtains 

1 2 2 2 1 1 2 1 0 1 1i i i i i i iu u CA C x C CA x u x x                               . 

(28) 

i

(.)
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Also, one can write the solutions of (25) in the form of the equivalent Volterra integral 
equations using assumption A4, as:  

     1
1 1 1

0

1( ) ( ) ( ) ( )
t

i i i ix t t s A x s A x s B u s ds   



    

  .  (29) 

By applying norm to  equation (29), if the solution is unique [24, 25] one obtains: 

   
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     
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 
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  
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 
 
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  

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 

 
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      
  

 



  

(30) 

where are    .. .. , .a A b B   Furthermore, the next relation is fulfilled: 

  1 1 1 10, , ( ) ( ) ( ) ( ) ( )i i i i i i it T x t x t x x t x t x x t            .  (31) 
Here, we may introduce  

 
1 1

0,
sup ( ) ,i i i

t T
x x t  


    then 1 1( ) ( )i i ix t x t      and 

 (32) 
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  
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 
Moreover, by applying  norm to both sides of expression (32), it follows 

     
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1 1 1
0 00

1
( ) 1 1

1 1
0 00

( )
( ) sup ( ) ( ) sup

1

( )
sup sup ( ) ( ) ,

1

t
t t i
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 
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
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 (33) 

or 

    

1

( )
1 1

0 00 0

( )
( ) ( ) sup sup .

t t
t s

i i
t T t T

t s
a a x t b u t e ds ds




   





 


   


    

    (34) 

where  1 1 / 1ia      . Further, we have 

    
 1 1 1

1
( ) ( ) ( ) .

1

T

i i i
e Tx t a a x t b u t

 

     
 



 


    

 
  (35) 

Introducing , as 

   
 

1 1
1

Te TO
 


 







 
,  (36) 

where (35)  is simplified to 

 .



 1O  
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    1
1 1 1( ) ( ) ( )i i ix t a a x t b u t O      
      ,  (37) 

one may conclude 

 
        

1
1 1

1 1
1

( )
( ) ( )

1
i

i i
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a a O

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    




 

 


  

 
.  (38) 

Then, if  a sufficiently large  is used, one can obtain that: 

   1( 1) 1 0Ta a e T         .  (39) 

After substitution of (31) into (28)  it follows 

 
1 0 1 1 0 1 1 1 1 1

0 1 1 1 1

( )

.
i i i i i i i i

i i i

u u x x u x x t

u x

              

      
    

 

      

   
 (40) 

Taking the -norm of expression (40) leads to: 

1 1i i iu u x
  

          .  (41) 

Finally, taking into account (38) we have 

    1 1
1i i iu O u u  

            
           .  (42) 

Therefore, there exists a sufficiently large  satisfying 

  1 1O        .  (43) 

According to Lemma 1[3], it can be concluded that: 
1lim

1i
i

u  





 .  (44) 

This completes the proof of Theorem 1. 

4. A numerical example

In this section, a numerical example is presented to demonstrate the validity of the design 
method based on open-closed-loop fractional-order ILC control. Consider the following 
fractional-order singular systems in pseudo state space form described by 

 
 

 
 

 
 

0.5
1 1 1

0.5 2 22

1 0 1 2 1 0
0 0 1 1 0 1

D x t x t u t
x t u tD x t

                                   
 (45) 

 
 

 
 

1 1

2 2

1 0
0 1

y t x t
y t x t
    

    
       

,  (46) 

where . The desired trajectories are given by   2
1 2( ) 1.5 1 , ( ) 0.5d dy t t t y t t    , 

   1,2 1,20 0 0d iy y  . In the simulation, we select the following gain matrices: 







 0,1 , 0.5t  
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 1 2
0.5 0.5 0.95 0.4

, ,
0 0.5 0 0.95

   
      

   
2

0.2 0
0 0.2

 
   

 
.  (47) 

To determine values of the gain matrices, it is necessary to satisfy the convergence 
condition of Theorem 1 and make a comprehensive consideration of the convergence 
speed. It is easy to show that the pair (E;A) is regular and 2 0.7287 1.I CB       

Figure 1. The tracking performance of the system output: 
(a)-upper figure:    1 line 1,2,3,4,5.. iterationy t k  ,  1dy t -bold blue line;
(b)-lower figure:    2 line 1,2,3,4,5.. iterationy t k  ,  2dy t -bold  blue line 
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Figure 2. The sup-norms of tracking errors e1(t) and e2(t) at each  iteration 

The simulation results presented in Figs.1-2 demonstrate the effectiveness of the 
developed ILC control scheme for the system defined by (45),(46). The ILC rule (17) is 
used, where Figures 1,a),b) show the tracking  performance of the ILC system outputs 
over interval t0,1. Also, we can find (see Figure 2) that proposed requirement for the 
tracking performance is achieved at the seventh iteration. 

5. The Conclusions

For the first time the open-closed-loop fractional-order iterative learning control is 
proposed for a given class of fractional-order singular systems. In particular, the 
sufficient conditions for the convergence in time domain of the proposed ILC were 
defined, by the corresponding theorem, and proved. Finally, a numerical example is 
presented to illustrate the effectiveness of the proposed open-closed ILC scheme of 
fractional-order for a class of fractional-order, linear singular system. 
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