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Abstract: 
  

In this paper kinematic and dynamic model or robot manipulator with 7 degrees of freedom is 
given. Lagrange’s equations of second kind in the covariant form are obtained by applying 
Rodriguez method, instead of regular Newton-Euler or Lagrange method. By implementing 
inverse dynamics control, linear and decoupled system is obtained, after which classical PID 
controller is introduced. In order to verify mathematical model is well derived, along with its 
control system design, numerical simulation of given robot is presented, wherein trajectory 
tracking problem is investigated.  
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1. Introduction  
 

Robots today are making a considerable impact on many aspects of modern life, from 
manufacturing to health care [1]. Unlike the industrial robotics domain where the workspace of 
machines and humans can be segmented, applications of intelligent machines that work in contact 
with humans are increasing, which involve e.g. haptic interfaces and teleoperators, cooperative 
material handling, power extenders and such high volume markets as rehabilitation, physical 
training, entertainment [2]. In that way, robotic systems are more and more ubiquitous in the field 
of direct interactions with humans, in a so called friendly home environment [3]. As one of these 
robotic systems capable of operating in such environments is NeuroArm robotic system. It is an 
integral part of the Laboratory of Applied Mechanics, at Faculty of Mechanical Engineering in 
Belgrade (Figure 1).  

From the mechanical point of view NeuroArm robotic arm has seven degrees of freedom. 
Given manipulator is useful for studying kinematics, dynamics, as well as for research of control 
systems design [4]. Schematic view of NeuroArm robot is given in Figure 2. With powerful DC 
motors and high resolution encoders, a smooth control of all seven cylindrical joints is provided. 
Accurate robot control and realistic robot simulation require an accurate dynamic robot model. 
Hence, by applying the Rodriques approach detailed mathematical model of NeuroArm robot will 
be given first. Using the information about dynamic model, nonlinear technique known as 
computed torque control is implemented, with aim to simplify equations of motion. Then, 
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classical PID controllers for each joint can be used, which in return allow robot to follow 
prescribed trajectory. Finally, numerical simulation of robot model is given, wherein tracking 
problem is considered so as to validate the control design task is well performed. 

                         

Fig. 1. Laboratory NeuroArm robotic arm.             Fig. 2. NeuroArm model with 7 degrees of freedom 

 
2. Mathematical model  
 

The mechanical structure of a robot manipulator consists of a sequence of rigid bodies (or 
links) interconnected by means of joints [5]. The open chain system of rigid bodies (V1), (V2), … , 
(Vn)  is shown Figure 3. The rigid body (V1) is connected to the fixed stand. Two neighboring 
bodies (Vi-1) and (Vi) are connected together with joint (i), which allows translation or rotation of 
body (Vi) in respect to body (Vi-1). The values qi represent generalized coordinates.  

 

Fig. 3. Open chain of the rigid bodies system.  

The reference frame Oxyz is inertial Cartesian frame, and the reference frame O  is local 
body –frame which is associated to the body (Vi). At initial time, corresponding axis of reference 
frames were parallel. This configuration is called reference configuration and it is denoted by (0). 

The symbol i  and i  can be introduced, which are defined as:  

1,   0,i i       (1) 
in the case when bodies (Vi-1) and (Vi) are connected with prismatic joint, and 

0,   1,i i       (2) 
in the case when bodies (Vi) and (Vi-1) are connected with cylindrical joint [6]. The geometry of 

the system is defined by the unit vectors ie


 and position vectors i


 and ii


 expressed in local 

coordinate systems i i i iC     connected to mass centers of bodies in a multibody system [7]. Unit 

vectors ie


, i=1,2, … , n is describing the axis of rotation (translation) of the i-th segment with 

respect to the previous segment, and '
1ii i iO O  


  denotes a vector between two neighboring 
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joints in a multi body system, while position of the center of mass of i-th segment is expressed by 

vectors '
1ii i iO C 


  . For the entire determination of this mechanical system, it is necessary to 

specify masses mi and tensors of inertia JCi expressed in local coordinate systems.    
If we have a kinetic energy of the system in terms of generalized coordinates and its 

derivatives, one can write dynamic equations of the system in terms of Lagrange equations of the 
second kind. After some transformations, equations of motion of a multibody system in a 
covariant form can be written as [5,8] 

   ,
1 1 1

,    1, , .
n n n

a q q q q q Q n  
   

  

           (3) 

Here, q  and q  denote generalized coordinates, n is a number of bodies in the system, 

a a   are elements of the basic metric tensor, and ,  are Cristoffel symbols of the first 

kind. Coefficients of the metric tensor are defined as  

            
1

,
n

i i i ii Ci
i

a m T T J   


   
   

  (4) 

where quasi-base vectors  iT 


and  i


 are 

 
  ,    ,

0,    ,

i
k

kkk ik
i k

e e q e i
T

i

  
 

  
               
  


    


  (5) 

 
,    ,

0,    ,
i

e i

i




    
 


   (6) 

and Cristoffel symbols are 

,

1
,    , , 1, , .

2

a a a
n

q q q
  

    

   
           

   (7) 

Eq. (3) has a suitable form of motion equation for automated setting of analytical expressions 
dedicated to the proposed mechanical system. Regardless of the chosen theoretical approach, in 
[5] it is shown that it could be started from different theoretical aspects (e.g. general theorems of 
dynamics, d’Alambert’s principle, Lagrange’s equation of second kind, Appell’s equations, etc.) 
to get to the equations of motion of the robotic system expressed in the covariant form as Eq. (3). 
It is also shown that for the above system of differential equations it is convenient to use 
Rodriquez approach for matrices of coordinate transformations. 

On the right hand side of Eq. (3), the generalized forces Q  represent external forces gQ , mQ  

which denote the generalized gravitational forces and motor torques, respectively. For details of 
the calculation of the basic metric tensor and Cristoffel symbols of the NeuroArm robot, the 
reader is referred to Appendix A.  
 
3. Controller design  

 
There have been proposed many different schemes of robot control. However, many of them 

can be regarded as special cases of the class known as computed torque control [9]. It is a special 
application of feedback linearization technique used in nonlinear control systems [10]. Computed 
torque controllers can be very effective, since they provide us independent joint control, which 
can then be used together with some classical and modern design techniques, as we will see in 
rest of this chapter.  

The robot arm dynamics can be written in compact matrix form as: 
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   , g mA q q C q q q Q Q        (8) 

where  A q  represents basic metric tensor (or inertia matrix),  ,C q q  is matrix that includes 

centrifugal and Coriolis effects, and gQ and mQ  are gravity term and motor torque vectors, 
respectively [3].  Now, suppose that a desired trajectory qd(t) has been selected for the arm 
motion. To ensure trajectory tracking, define an output or tracking error as: 

     .de t q t q t     (9) 

To demonstrate the influence of the input  mQ t  on the tracking error, differentiate twice to 

obtain: 

      ,de t q t q t       (10) 

     .de t q t q t       (11) 

Solving now for  q t in Eq.(8) and substituting into the last equation yields: 

      1 , .g m
de t q t A C q q q Q Q          (12) 

Defining the control input function as: 

      1 , ,g m
du t q t A C q q q Q Q         (13) 

the feedback linearizing transformation may be inverted to yield: 

        , .m g
dQ t A q t u t C q q q Q         (14) 

Equation above is known as computed torque control law [3,9]. If we select a control u(t) that 
stabilizes e(t) so that it goes to zero, than the nonlinear control input given by Eq.(14) will cause 
the robot arm to follow the desired trajectory qd(t). In fact, substituting Eq.(14) into  Eq.(8) yields: 

        , , .g g
dA q q C q q q Q A q q u C q q q Q             (15) 

or  
.e u    (16) 

 
Fig. 4. Computed torque control scheme, showing inner and outer loop.  

The nonlinear transformation (13) has converted a complicated nonlinear controls design 
problem into a simple design problem for a linear system consisting of n decoupled subsystems, 
each obeying Newton’s laws. The resulting control scheme appears in Figure 4. It consists of an 
inner nonlinear loop plus an outer control signal u(t). Since u(t) will depend on q(t) and qd(t), the 
outer loop will be a feedback loop. There are several ways for selecting u(t), including robust and 
adaptive control techniques. One way to select u(t) is as the proportional plus derivative feedback, 
i.e. as PD controller: 
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     .d pu t K e t K e t      (17) 

Then the overall robot arm input becomes: 

          , .m g
d d pQ t A q t K e t K e t C q q q Q          (18) 

The closed loop error dynamics are: 

      0,d pe t K e t K e t       (19) 

We can see the error system asymptotically stable as long as the Kp and Kd are all positive. 
However, in the presence of constant disturbances, PD control gives a nonzero steady-state error. 
In that case, proportional-integral-derivative (PID) controllers of the following form: 

       ,d p iu t K e t K e t K e t        (20) 

will cause the error e(t) to go to zero. Selection of controller and its parameters depends on the 
performance objectives, e.g. the type of the desired trajectory, whether the closed loop response 
should be with or without overshoot, are there unknown disturbances or not, etc.  
 
4. Simulation results  

In this section we showed numerical simulation of NeuroArm robotic arm controlled with a 
PD computed torque controller. The desired trajectories for all seven joints are: 

   , sin 3 ,    1,2, ,7.d iq t t i       (21) 

PD controller gains are chosen to achieve zero overshoot of closed loop response: 

, ,25,    10,    1,2, ,7.p i d iK K i       (22) 

By applying computed torque and PD control, closed loop dynamics for every joint 
,  1,2, ,7,iq i    is described with Eq.(19). For the same desired trajectory ,d iq  given by (21), and 

same controller parameters (22), closed loop response will also be the same for all seven joints. 
Hence, it is enough to show the closed loop response for one joint, since all other time responses 
will be equal. The result of the simulation is shown in Figure 5. The initial conditions results in a 
large initial error that vanishes within approximately one second. Disturbance signal d(t) of 
amplitude 20 applied to the system at time interval  2,  2.1t  was successfully canceled by the 

PD control action.  

 
Fig. 5. Joint angles   ,  1,2, ,7.iq t i    
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Figures 6, 7 and 8 show control torques for all joints. The larger torque corresponds to the 
inner motors, which must move more links than motors which are positioned higher in the 
kinematic chain. It is important to note that although inverse dynamics control results in 
decoupled subsystems at the outer-loop level, it does not result in a decoupled joint-control level. 
This is because the inner loop scrambles the signal u(t) among all the joints. Thus, information on 
all joint position  q t  and velocities  q t  is generally needed to compute the control  mQ t for 

any given joint.  

 

Fig. 6. Torque input  1 .mQ t  

 

Fig. 7. Torque inputs   ,  2,3, 4.m
iQ t i   
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Fig. 8. Torque inputs   ,  5,6,7.m
iQ t i   

 
5. Conclusions 

 
In this paper kinematic and dynamic model of NeuroArm robotic arm with 7 degrees of 

freedom is presented. By applying Rodriguez method, Lagrange’s equations of second kind in the 
covariant form are obtained. Computed torque control, as a special application of feedback 
linearization technique, is used to obtain linear and decoupled dynamic model, after which 
classical PD controller is introduced. Proposed manipulator control scheme is numerically 
simulated and tested. Trajectory tracking problem is considered in order to verify that robot 
dynamics model is well derived, along with its control system. 
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Appendix A.  

Kinetic energy of the system can be expressed in the form 

   
7 7

1 1

1 1
,

2 2kE a q q a 


 

     q q    (A.1) 

where formula for the coefficients of the metric tensor is of the form 
2

.kE
a a a

q q   


  
  

   (A.2) 

The coefficients of the basic metric tensor can be calculated by using the metrics of a multibody 
system 

            
1

.
n

i i i ii Ci
i

a m T T J   


   
   

  (A.3) 

For example, coefficient 34a  can be obtained by using (A.3) 

 
            

                         
                         

7

3 4 3 434
sup 3,4

3 4 4 4 3 4 4 4 3 5 4 5 3 5 4 54 4 5 5

3 6 4 6 3 6 4 6 3 7 4 7 3 7 4 76 6 7 7 .

i i i ii Ci
i

C C

C C

a m T T J

m T T J m T T J

m T T J m T T J



   

       

       


   

       

       
  (A.4) 

In the similar manner, other coefficients 11 12 17 21 22 27 71 77,  , ,  ,  ,  , ,  , ,  , ,  ,a a a a a a a a    can be 
calculated. 
By definition, expression for Christoffel symbols of the first kind is of the form 

 
               

7

,
sup ,

,  ,  ,i i i i
i ii Ci

i

m e T T e e e e e            
  

               
      

  (A.5) 

where  i
Ci  is the planar tensor of inertia given in the form  

  .
i i i i i i i

i i i i i i i

i i i i i i i

C

i
Ci C

C

J J J

J J J

J J J

     

     

     

 
 

   
 
  

   (A.6) 

By taking into account that    , and properties of symmetry and antisymmetry, we have 

, , , ,,  ,  .                   (A.7) 

For example, Christoffel symbol 23,5  is then determined as 

 
             

             
             
             

7

3 523,5 2 2 2 3 5 35 2
sup 3,5

5 5 5
3 5 5 55 2 2 2 3 5 35 5 2

6 6 6
3 6 5 66 2 2 2 3 5 35 6 2

7 7 7
3 7 5 77 2 2 2 3 5 35 7 2 .

i i i
i ii Ci

i

C

C

C

m e T T e e

m e T T e e

m e T T e e

m e T T e e



          

         
         
         


   

   

   

   

 (A.8) 

In the similar manner, other Christoffel symbols can be calculated.  


