
1 

6th International Congress of Serbian Society of Mechanics 
Mountain Tara, Serbia, June 19-21, 2017 

 
 
 
CALCULATION OF THE ACCELERATION FORCE COMPONENTS AND 
ROLL AND PITCH LINK ANGLES OF THE CFS AND SDT 
 

Vladimir Kvrgić1, Jelena Vidaković1, Mihailo Lazarević2, Goran Pavlović1 

 
1 Lola Institute, Kneza Viseslava 70a, 11030, Belgrade, Serbia 
e-mail: vladimir.kvrgic@li.rs, jelena.vidakovic@li.rs, goran.pavlovic@li.rs 
2 Faculty of Mechanical Engineering, 
The University of Belgrade, Kraljice Marije 16, 11120 Belgrade 35 
e-mail: mlazarevic@mas.bg.ac.rs 
 
 
 
Abstract 
  

Pilots of modern combat aircraft are exposed to the devastating effects of high acceleration 
forces and unusual orientation. The pilots’ ability to perform tasks under these extreme flight 
conditions must be examined. A centrifuge flight simulator (CFS) for pilot training is designed as 
a three-degree-of-freedom 3DoF manipulator with rotational axes. Through rotations about these 
axes, acceleration forces that act on aircraft pilots are simulated. The spatial disorientation trainer 
(SDT) examines a pilot’s ability to recognise unusual orientations, to adapt to unusual positions 
and to persuade the pilot to believe in the aircraft instruments for orientation and not in his own 
senses. The SDT is designed as a (4DoF) manipulator with rotational axes. Through rotations 
about these axes, different orientations can be achieved; different acceleration forces acting on the 
pilot can also be simulated. In this paper, the acceleration forces and angular velocities that act on 
the simulator pilot in the CMS and SDT are calculated along with the roll and pitch angles of the 
gondola for these forces. 
 
Key words: Centrifuge flight simulator  Spatial disorientation trainer  Kinematics  Dynamics  
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1. Introduction 
 

Modern thrust-vectored jet aircraft have the capability of developing multi-axis accelerations 
[1,2]. These "agile" aircraft are capable of unconventional flight with high angles of attack, high 
agile motions in all 3 aircraft axes, rotations around those axes and accelerations of up to 9 g (g is 
Earth’s acceleration), with acceleration rates (jerk) of up to 9 g/s [3,4]. Hence, the destructive 
effects of the high acceleration forces and the rapid changes of these forces on the pilot’s 
physiology and the ability to perform tasks under these flight conditions must be tested. A human 
centrifuge is used for the reliable generation of high G onset rates and high levels of sustained G, 
to test the reactions and the tolerances of the pilots. Here, acceleration force G=a/g, 

2 2 2 1 2( )n ta a a g    is the magnitude of acceleration acting on the pilot, an is normal, and at is 
the tangential acceleration. 

The centrifuge (Fig. 1) has the form of a three degree-of-freedom (3DoF) manipulator with 
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rotational axes, where the pilot’s head (or chest for some of the training) is considered to be the 
end-effector [5-10]. The arm rotation around the vertical (planetary) axis is the main motion that 
achieves the desired acceleration force. CFS must achieve velocity, acceleration and jerk of the 
pilot through suitable rotations of the centrifuge arm about this axis. The arm carries a gimballed 
gondola system, with two rotational axes providing pitch and roll capabilities. The roll axis lies in 
the plane of the arm rotation, perpendicular to the main rotational axis, i.e., in the x-axis direction. 
The pitch (y) axis is perpendicular to the roll axis (Fig. 3). The task of the roll and pitch axes is to 
direct the acceleration force into the desired direction. It is considered that the pilot’s head (chest) 
is placed in the intersection of the gondola’s roll and pitch axes. In this way, the centrifuge 
produces the transverse Gx, lateral Gy and longitudinal Gz acceleration forces and the roll ˆ x , 

pitch ˆ y  and yaw ˆ z  angular velocities to simulate the aircraft’s acceleration forces and angular 

velocities. 

  
                     Fig. 1. Centrifuge with 3 degrees of freedom.     Fig. 2. SDT with 4 degrees of freedom. 

 
Although the centrifuge is capable of generating acceleration forces of up to 15 g for materials 

testing purposes, forces that are less than or equal to 9 g are used for pilot training. 
Modern jet aircrafts have the capability of achieving different orientations. The SDT examines 

a pilot’s ability to recognise these orientations, to adapt to them and to persuade the pilot to 
believe only in the aircraft instruments for orientation. The SDT, given in [11], is similar to the 
CFS, but it has four rotational axes (Fig. 2). Arm rotation around the vertical (i.e., planetary) axis 
is the primary motion. It carries a gyroscopic gondola system with three rotational axes providing 
yaw, pitch and roll capabilities. Their task is to achieve any orientation. The yaw axis (z) is 
parallel with the arm axis. The roll axis lies in the plane of the arm rotation, perpendicular to the 
main rotational axis (i.e., in the x direction). The pitch (y) axis is perpendicular to the roll axis 
(Fig. 4). 

A forward kinematics analysis of the CFS and SDT is given in Section 2. The calculation of 
the acceleration forces Gx, Gy and Gz and angular velocities ˆx , ˆy  

and ˆz  that act on the 

simulator pilot and the calculation of the roll and pitch angles of the gondola for the known forces 
of the CFS and SDT is given in Section 3. The calculation of the angular acceleration of the 
centrifuge arm 1q is given in Section 4. 

 
2. Forward kinematics of the CFS and SDT 
 
2.1 Forward geometric model

 
of the CFS 

 
This section defines the coordinate frames for the centrifuge links (Fig. 2) and the matrices 

that determine their relations. The centrifuge links and their coordinate frames are denoted by 
using the Denavit-Hartenberg convention (D-H) (Fig. 3). The base is denoted by 0, the arm by 1, 
the roll ring by 2 and the gondola by 3. The arm rotation angle is denoted by q1=, the roll ring 
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rotation angle by q2= and the gondola rotation angle (pitch) by q3=. The CFS that was 
developed as a research result presented in this paper has the following features: arm length a1=8 
m, roll axis rotation range of ±180 and pitch axis rotation range ±360. The centrifuge base 
coordinates are denoted by x0y0z0, the arm coordinates by x1y1z1 (link 1), the roll ring coordinates 
by x2y2z2 (link 2), the gondola coordinates by x3y3z3 (link 3) and the pilot coordinates by xyz. Here, 
x3=x, y3=y and z3=z. The D-H parameters for the 3-axis CFS components are given in Table 1. 

  
Fig. 3. Coordinate frames of the 3-axis centrifuge 

links in initial position.                                     
Fig. 4. Coordinate frames of the 4-axis SDT in 

initial position. 
 

Table 1 D-H parameters for the 3-axis centrifuge links 
Link Variable [º] a [mm] d [mm]  [º] 

1 q1 a1 0 90 
2 q2 +90 0 0 90 
3 q3+90 0 0 -90 

 
The 4x4 homogenous matrix that transforms the coordinates of a point from frame xnynzn to 

frame xmymzm is denoted by n
mT  and from x0y0z0 to xmymzm by Tm. n

mD  is a 3x3 orientation matrix, 

and n
mp  is a 3x1 position vector. This matrix, which describes the relation between one link and 

the next, is called i-1Ai=A(i-1,i). By using the convenient shorthand notation, sin( )i iq s , 

cos( )i iq c , the following homogenous matrices for the relation between the centrifuge link 
coordinate frames are defined to derive the kinematic equations for the machine, as follows: 

0
1 0 1 0 1 0

1 1 1 1

1 1 1 1

ot( , ) rans( , ) ot( ,90 )
0
0 ,0 1 0 0

0 0 0 1

z x a x
c s a c
s c a s

 
 
  
  

Α R T R 

 

1
2 1 2 1 1

2 2

2 2

ot( , ) ot( ,90 ) ot( ,90 )
0 0
0 0 ,0 1 0 0

0 0 0 1

z z x
s c

c s

 
 
  
  

Α R R R 

    

2
3 2 3 2 2

3 3

3 3

ot( , ) ot( ,90 ) ot( , 90 )
0 0
0 0

0 1 0 0
0 0 0 1

z z x
s c

c s

  
  
  
  

Α R R R 

                                                                                      (1) 

The forward kinematics that is related to the robot geometry is used to calculate the position 
and orientation of the links and end-effector (in this case, the pilot’s head/chest) with respect to 
the centrifuge variables q1, q2 and q3. It is determined from the following matrix: 
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1 2 3 1 3 1 2 1 2 3 1 3 1 1
0 1 2 1 2 3 1 3 1 2 1 2 3 1 3 1 1

3 1 2 3
2 3 2 2 3 0
0 0 0 1

c s s s c c c c s c s s a c
s s s c c s c s s c c s a s

c s s c c

   
       
  

T Α Α Α

                               

                                       (2) 

 
2.2 Forward geometric model

 
of the SDT 

 
This section defines the coordinate frames for the SDT links (Fig. 4) and the matrices that 

determine their relations. The base is denoted by 0, the arm by 1, the gyroscope frame by 2, the 
roll ring by 3 and the gondola by 4. The arm rotation angle is denoted by q1, the gyroscope frame 
rotation angle by q2, the roll ring rotation angle by q3= and the gondola rotation angle (i.e., pitch) 
by q4=. The yaw angle is =q1+q2. The SDT presented in this paper has the following features: 
arm length a1=2.394 m, gyroscope frame length d2=1.957 m; and q1, q2, q3 and q4 rotation ranges 
±360. The SDT base coordinates are denoted by x0, y0, z0; the arm coordinates by x1, y1, z1 (link 
1); the gyroscope frame by x2, y2, z2 (link 2); the roll ring coordinates by x3, y3, z3 (link 3); the 
gondola coordinates by x4, y4, z4 (link 4); and the pilot coordinates by x, y, z. It is assumed that 
x4=x, y4=y and z4=z. The D-H parameters for the 4-axis SDT links are given in Table 2. 

 
Table 2 D-H parameters for the 4-axis SDT links 

Link Variable [º] a [mm] d [mm]  [º] 
1 q1 a1 0 0 
2 q2 0 d2 90 
3 q2+90 0 0 90 
4 q3+90 0 0 -90 
 

The following homogenous matrices for the relation between the SDT links coordinate frames are 
defined to derive the kinematic equations for the machine as follows: 

1 1 1 1

0 1 1 1 1
1

0
0

0 0 1 0
0 0 0 1

c s c a
s c s a
 

 
 
 
  

Α , 

2 2

1 2 2
2

2

0 0
0 0

0 1 0
0 0 0 1

c s
s c

d

 
  
 
  

Α , 

3 3

2 3 3
3

0 0
0 0

0 1 0 0
0 0 0 1

s c
c s
 
 

 
 
  

Α , 

4 4

4 43
4

0 0

0 0

0 1 0 0

0 0 0 1

s c

c s

  
  
 
 
 

Α                       (3) 

Forward kinematics related to robot geometry is used to calculate the position and orientation 
of the links and end-effector (i.e., the pilot’s head or chest) with respect to the SDT variables q1, 
q2, q3 and q4. These are determined from the following matrix: 

3 4 4 3 3 4 4 1 1

0 1 2 3 3 4 4 3 3 4 4 1 1
4 1 2 3 4

3 4 3 3 4 2

0 0 0 1

c s s s c c c c s c s s a c
s s s c c s c s s c c s a s

c s s c c d

    

    

   
     

   
  

T Α Α Α Α

                                                      

 (4) 

 
3. Acceleration force components and roll and pitch link angles 
 

Fig. 5 shows the transverse Gx, lateral Gy and longitudinal Gz acceleration force components 
acting on the pilot’s head or chest in the CFS or SDT [5,11]. The three main axes of the 
coordinate frame attached to the human body are the x-axis, which extends from the face to the 
back; the y-axis which extends from the left to the right side; and the z-axis which extends from 
the head to the pelvis. 
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3.1 Calculation of the simulator pilot acceleration force components in the CFS 
 
Fig. 6 shows Gx, Gy and Gz acceleration force G components that act on the pilot’s head 

(chest), coordinate frames, angles, angular velocities and acceleration forces of the centrifuge.  
The centrifuge links angular accelerations 1 1 1i i i i i i iq q     ω ω z ω z    , i=1,2,3 are: 

 1 10 0 ,Tqω     2 1 1 1 20 1 0 1 0 0 ,T Tq q q   ω ω    

     3 2 2 2 3 2 1 3 2 2 2 30 0 0 0T T Tc s q c q q c c q q    ω ω       . The linear accelerations 

1 1 1 1 1 1( )i i i i i i i
 

          v v ω p ω ω p  , i=1,2,3, where 1 1i i i

  p p p ,  1 1 0 0 Tap ,  2 3 0 0 0 T  p p , 

experienced by the simulator pilot at the intersection point of the roll and pitch axes is: 

2 2
1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 0

TT

x y zv v v a s c c s             v v v       

                                             

(5) 

Based on Eq. (6) for q1=0 and adding the gravitational acceleration g, the orthogonal components 
Gn, Gt and Gv for the normal (radial), tangential and vertical acceleration force G components, 
respectively, that are experienced by the simulator pilot are the following: 

2
0 1 1

0 1 1

0

1

1

x n n

y t t

z v

G a a g G

G a a g G
g

G g G




      
                
              

      

                                                                                    

(6) 

                 
Fig. 5. The transverse, lateral and 

longitudinal acceleration force 
components Gx, Gy and Gz which act on 

the pilot in the simulator.  

Fig. 6. The transverse, lateral and longitudinal acceleration 
force components Gx, Gy and Gz, which act on the pilot in the 

CFS. 

  

The link angles q2= and q3= and the angular velocity 1q  of the arm define the orthogonal 

components Gx, Gy and Gz of the resultant vector G that are experienced by the simulator pilot. 
Based on Eqs. (2) and (6), the resultant vector G is: 

1
3 0 0 0

T T

x y z x y zG G G G G G       G D
                                                                              

(7) 

3 0 2 2 0 3( )x x yG s G s c G c  
                                                                                                             

(8) 

0 2 2y xG G c s  
                                                                                                                             

(9) 

3 0 2 2 0 3( )z x yG c G s c G s  
                                                                                                           

(10) 
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Angles q1=, q2= and q3= and their derivatives define the roll, pitch and yaw angular velocities 
of ˆx , ˆ y

 
and ˆz , which are experienced by the simulator pilot; they are given in the following 

equations (for q1=0): 

1 1
3 3 3ˆ ˆ ˆ ˆ

T T
x y z c q q q s q                  ω D ω D    

                                               
(11)

 
1ˆx c c s     

                                                                                                                         (12) 

1ˆ y s                                                                                                                                 (13)
 

1ˆ z s c c                                                                                                                             (14) 

 
3.2 Calculation of the centrifuge roll and pitch angles 
 

The centrifuge roll angle is calculated by Eq. (9), which uses the given lateral force Gy, in the 
following way: 

2 2 1 2 2
2 0 0atan 2( (1 ) ,1 )x y y x yq G G G G G                                                                              (15) 

If 0yG   and 2 1yG  , then 2 2q q   . 

The function atan2 is the arctangent function with two arguments which is used in a variety 
of computer languages (C++, Java, Matlab). 

The roll angle can be calculated only if 2 2
0 1x yG G  .

 
Otherwise, it is not possible to achieve the 

given lateral force Gy. For Gy=0, Eq. (15) yields: 

2 0atan2( ,1)xq G                                                                                                                     (16) 

 Eqs. (8) and (10) show that it is not possible to achieve both of the given Gx and Gz forces, 
even when they are in the allowed ranges. As a result, the centrifuge pitch angle is calculated by 
Eq. (8), using the given transverse force Gx, or by Eq. (10), using the given longitudinal Gz force. 
Eq. (8) yields: 

2 2 2 1 2 2 2
3 0 0atan 2( ( ) , )y x y x xq G b G b G G b G                                                                         (17) 

where 0 2 2xb G s c  . If 2 2 2
0y xb G G  , then it is not possible to achieve the given transverse 

force Gx. For Gx=0, Eq. (16) yields: 

3 0atan 2( , )yq G b                                                                                                                    (18) 

Eq. (10) yields the following: 

2 2 2 1 2 2 2
3 0 0 0atan 2( ( ) , )y z y z z yq G d G b G G G G                                                                      (19) 

If 0zG   and 2 2
0z yG G , then is 3 3q q   . If 2 2 2

0y zb G G  , then it is not possible to achieve 

the given longitudinal Gz force. Basic pilot training implies that Gz=G (Gx=0 and Gy=0). 
Consequently, the roll and pitch angles are given by Eqs. (16) and (18). 
 
3.3. Calculation of the pilot SDT acceleration forces 
 

Fig. 7 shows the coordinate frames, angles, angular velocities and acceleration forces of the 
SDT. The linear acceleration experienced by the simulator pilot at the intersection point of the 
roll and pitch axes is the same as by CFS, Eq. (5). The same is for the acceleration components   
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Based on this equation, for q1=q2=0 and a gravitational acceleration g, the acceleration force 
components Gn, Gt and Gv are the same as in CFS, Eq. (6). 

Angles q2, q3 and q4, the angular velocity 1, and the angular acceleration 1  of the arm define 
the orthogonal components Gx, Gy and Gz of the resultant vector G experienced by the simulator 
pilot. Based on Eqs. (4) and (6), the resultant vector G is: 

1
4 0 0 0

T T

x y z x y zG G G G G G       G D
                                                                            

(20)
 
 

2 3 4 2 4 0 2 3 4 2 4 0 3 4( ) ( )x x yG c s s s c G s s s c c G c s                             
                                                

(21) 

3 2 0 2 0 3( )y x yG c c G s G s   
                                                                                                        

(22) 

2 3 4 2 4 0 2 3 4 2 4 0 3 4( ) ( )z x yG c s c s s G s s c c s G c c    
                                                                        

(23) 

 

Fig. 7. Coordinate frames, angles, angular velocities and acceleration forces of the 4-axis SDT. 
 
Angles q3= and q4= and their derivatives, and the derivatives of the angles q1 and q2 define the 
roll, pitch, and yaw angular velocities ˆx , ˆy  

and ˆz  experienced by the simulator pilot. These 

are given in the following equations for q1=0: 

1 1
4 4 4 3 3 4 3 3 4 3 4ˆ ˆ ˆ ˆ

T T
x y z s q c c q c q s c q q s q                   ω D ω D      

                              
(24) 

4 3 3 4ˆx c q c s q   
                                                                                                                       (25) 

4 3ˆ y q s q                                                                                                                                (26)
 

4 3 3 4ˆz s q c c q                                                                                                                           (27) 

 
3.2. Calculation of the roll and pitch angles of the SDT 
 

The calculation of the roll and pitch angles of the gondola for the known acceleration forces 
are shown below. These angles can be calculated for the known angle q2. The roll angle is 
calculated by Eq. (22) using the given lateral force Gy, in the following way: 

2 2 1 2 2
3 1 1atan2( (1 ) ,1 )y y yq p G G p G                                                                                 (28) 

where 1 2 0 2 0x yp c G s G  . If 0yG   and 2 1yG  , then is 3 3q q   . 
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If 2 2 1 2
1 1(1 ) 0y yp G G p     and 1yG  , then 3 90q   ,  

if 2 2 1 2
1 1(1 ) 0y yp G G p     and 1yG  , then 3 90q    , and  

if 2 2 1 2
1 1(1 ) 0y yp G G p     and 1yG  , then 3q  is undefined.  

The roll angle can be calculated only if 2 2
1 1 yp G  is satisfied; otherwise it is not possible to 

achieve the given lateral force Gy. For Gy=0, Eq. (28) yields: 

3 1atan2( ,1)q p                                                                                                                      (29) 

 Eqs. (21) and (23) show that it is not possible to achieve both of the given Gx and Gz forces, 
even when they are in the allowed ranges. As a result, the SDT pitch angle is calculated by Eq. 
(21), using the given transverse force Gx, or by Eq. (26), using the given longitudinal Gz force. 
Eq. (21) yields: 

2 2 2 1 2 2 2
4 2 3 2 3 2atan 2( ( ) , )x x xq G p p G p p p G                                                                       (30) 

where 2 2 3 0 2 3 0 3x yp c s G s s G c   , 3 2 0 2 0x yp s G c G  .  

If 2 2 2 1 2
2 3 2 3( ) 0x xG p p G p p     and 2xG p , then 4 90q   ,  

if 2 2 2 1 2
2 3 2 3( ) 0x xG p p G p p     and 2xG p , then 4 90q    , and  

if 2 2 2 1 2
2 3 2 3( ) 0x xG p p G p p     and 2xG p , then 4q  is undefined.  

If 2 2 2
2 3 xp p G  , then it is not possible to achieve the given transverse force Gx. For Gx=0, Eq. 

(30) yields: 

4 3 2atan2( , )q p p                                                                                                              (31) 

Eq. (26) yields the following: 

2 2 2 1 2 2 2
4 2 3 2 3 3atan 2( ( ) , )z z zq p p G p p G p G                                                                 (32) 

If 0zG   and 2 2
3zG p , then is 4 4q q   . If 2 2 2

2 3 zp p G  , then it is not possible to achieve 

the given longitudinal Gz force. 
 
4. Calculation of the angular acceleration 1q  

 
 Eq. (6) gives the resulting force that is experienced by the simulator pilot at the intersection 
point of the roll and pitch axes (for q1=0) as a function of the angular velocity and acceleration of 
the centrifuge arm, which is: 

2 2 2 1 2 2 2 2 1 2 2 4 2 2 1 2
0 0 0 1 1 1( ) ( ) [ ( ) ]x y z n tG G G G a a g g a q q g g                                           (33) 

According to the requirement that the increase in the acceleration force G should be constant and 
equal to n, the following is valid: 

2 4 2 2 1 2
1 1 1

1
[ ]    dG d
a ( q q ) g n

dt dt g
, which yields 2 4 2 2 1 2

1 1 1([ ( ) ] )d a q q g n g dt    . If we 

assign the resulting acceleration with a= G g, then the previous equation will be: 

2 4 2 2 1 2
1 1 1([ ( ) ] )    da d a q q g n g dt                                                                                           (34) 

The previous differential equation does not have a solution in the general case.  
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In each interpolation period, the robot controller determines the angular velocities of each 
motor link. An interpolation period of t=0.005 s is adopted here. During this period, the servo 
system of the controller compares (every 0.001 s) the given and achieved motor rotor positions 
and corrects rotor angular velocities. Based on these observations, an approximated solution from 
Eq. (34) using a discretisation technique is obtained in the following manner. This approach 
allows us to solve this differential equation for each interpolation period t, which simplifies the 
solution. For the given rate of change of acceleration a t ng   , the acceleration a will first be 
calculated on the basis of this acceleration in the previous interpolation period, aprev, in the 
following way: 

preva a a   , a n g t  
                                                                                                         

(35) 

If we assign the angular velocity of the centrifuge arm in the previous interpolation period with 

1prevq , we obtain: 

1 1 1prevq q q t    
                                                                                                                         

(36) 

 

Fig. 8. Example of the kinematics parameters of the centrifuge motion: (а) G, (b) Gz, (c) Gy, (d) 1q [ s-1], (e) 

q2= [], (f) q3= []. 
 

If we substitute 1q  calculated in this manner into the equation 2 2 4 2 2 2
1 1 1 1   a a q a q g  and neglect 

the terms with t3 and t4, the following equation for calculating the centrifuge arm acceleration 
is obtained:   

3 2 2 2 2 2 6 2 4 1 2
1 1 1 1 1

1 2 2
1

2 [(1 6 )( ) 2 ]

1 6

        


 

   



prev prev prev prev

prev

q t q t a g a q t q
q

q t
                                   

(37) 

The previous equation is valid for the movement that has a positive acceleration onset. For the 
movement that has a negative acceleration onset, the discriminant 

2 2 2 2 2 6 2 4
1 1 1 1(1 6 ) ( ) 2       prev prev prevq t a g a q t q  is mostly negative, which means that this 

equation cannot be used directly. In that case, a simple solution is used, in which the values of 1q  

for the positive acceleration onset n of the same magnitude are reversed.  
In [12], Eq. (34) is solved, for every interpolation period, using principle given in Eq. (35) as 

well. Solution is obtained in the form of Jacobi elliptic integrals. 
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Fig. 8 shows kinematics parameters of an example of the centrifuge motion program obtained 
with the suggested algorithms.  
 
3. Conclusions 

 
The calculation of the transverse Gx, lateral Gy and longitudinal Gz acceleration forces and 

angular velocities experienced by the simulator pilot in the gondola and the roll and pitch angles 
of the gondola of the CFS and SDT for the known acceleration forces is given in this paper. 

The method for the calculation the angular acceleration 1q  that gives the constant increase in 
the acceleration force G is also given in the paper.  
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