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Abstract. Th e paper  designs an  app r op r iate i t er at i ve lear n ing con t r ol ( ILC) 
algor i t hm  based  on  t he t r ajector y  char acter i st ics of  upper  exoskeleton  r obot ic 
sy stem .The procedure of mathematical modelling of an exoskeleton system for rehabilitation is given and 
synthesis of a control law with two  loops. First (inner) loop represents exact linearization of a given system, 
and the second (outer) loop is synthesis of a iterative learning control law which consists of two loops, open 
and closed loop. In open loop ILC sgnPDD2 is applied, while in feedback classical PD control law is used. 
Finally, a simulation example is presented to illustrate the feasibility and effectiveness of the proposed 
advanced open-closed iterative learning control scheme. 

1 Introduction 
Stroke is second cause of mortality and disability in the 
world, [1]. Patients who survive stroke are faced with 
some degree of limb impairment, depending on the place 
in brain structure and size of caused damage. It is widely 
accepted that brain structure can be reorganized after 
stroke and thus some functions can be fully or partially 
recovered. Rehabilitative training plays crucial role in 
recovery of lost functions, [2]. In order to enhance 
therapy deliveredby therapists, use of robotics emerged 
as aid in rehabilitation process,[3]. It is noted in [4] and 
[5] that robot-aided sensorimotor training, especially in 
upper limbs, shows that more activity leads to better 
recovery and that recovered functions are sustained over 
long period.  
Rehabilitative robotics of upper limbs started with end-
effector robots research. End-effector robot supports 
patients arm in one point of contact, usually patients 
hand or forearm. End-effector robot joints movement 
doesn’t coincide with movement of patients arm. These 
drawbacks with end-effector robots influenced research 
of exoskeleton rehabilitation robots. Exoskeletons 
mitigate important flaws of end-effector robots 
mentioned above [6]. Rehabilitation robots can be 
developed to assist rehabilitation in individuals with 
stroke. 
Also, in the last three decades, iterative learning control 
(ILC) has been extensively studied, achieves significant 
progress in both theory and application, and becomes 
one of the most active fields in intelligent control and 
system control,[7-11]. 

 
 
Fig. 1. Schematics of end-effector robots (a) and exoskeleton 
robots (b) 
  
ILC is an intelligent control method for systems which 
perform tasks repetitively over a finite time interval 
where ILC approach is an imitation of a human learning 
process. Intelligent beings tend to learn by performing a 
trial (i.e. selecting a control input) and observing what 
was the end result of this control input selection. 
Emulating human learning, ILC uses knowledge 
obtained from the previous trial to adjust the control 
input for the current trial so that a better performance can 
be achieved. The basic idea of ILC schemes is to refine 
the control input to make better operation performance 
of the system on the next trial by use of updated data of 
the previous trial. 
On the other side, rehabilitation training is a kind of 
repetitive training. Body state of patients will improve 
with an increase in the number of training while the 
auxiliary level of robot and electrical stimulation will be 
reduced.In ILC the control input is directly updated 
between trials and it is this feature that makes it suitable 
for exoskeleton robots (i.e robotic assisted stroke 
rehabilitation),[12].  
In this paper, a advanced robust open-closed iterative 
learning control for exoskeleton rehabilitation robots is 
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suggested and introduced. First, the procedure of 
mathematical modeling of an exoskeleton robotic system 
for rehabilitation is presented using the Rodrigues 
approach, [13,14]. Then, we propose a joint space 
trajectory tracking control system consisting of two 
loops. First (inner) loop represents exact linearization of 
a given system, and the second (outer) loop is synthesis 
of a linear control law which consists of two branches, 
feedforward and feedback branch of ILC control. In 
feedforward ILC algorithm is applied, while in feedback 
classical PD control law is applied. Finally, a simulation 
example is presented to illustrate the feasibility and 
effectiveness of the proposed advanced open-closed ILC 
scheme. 
  
   
2 Nonlinear mathematical model of 
exoskeleton robot 
 
Control object is modelled using Rodrigues approach. 
This approach is more viable, than Denavit-Hartenberg 
method, for setting up kinematics and dynamics of 
biomechanical systems [7].Validation of control laws is 
carried out using 3DOF biomechanical system, (Fig 2b). 
The system consists of two bodies - links. Links are 
simplified  model of human arm attached to exoskeleton. 
Links are modeled as two truncated cones (Fig.2a). 

 
Fig. 2. a)Biomechanical system of upper limb as open chain of 
the rigid bodies system b) Biomechanical system presented as 
3DOFs system –Rodrigues approach 
 
The mechanical structure of a proposed system consists 
of a sequence of rigid bodies (or links) interconnected by 
means of one-degree-of–freedom joints forming 
kinematical pairs of the fifth class, [13]. The open chain 
system of rigid bodies (V1), (V2),(V3) is shown in Fig. 
2b.Two neighboring bodies ( 1iV − ) and ( iV ) are 
connected with a joint 1,2,3i = , which allows rotation of 
body ( iV ) in respect to the body ( 1iV − ). The values 

, 1, 2,3iq i =  represent generalized coordinates and define 
a configuration of the mechanical model, where 3n =  is 
a number of bodies in the system. The reference frame 
Oxyz is the inertial Cartesian frame, and the reference 
frame Oξηζ is a local body–frame which is associated 
with the body ( iV ). At an initial time, the corresponding 

axes of reference frames were parallel, i.e. all the 
variables 0, 1,2,3iq i= =   and the robotic system is in 
reference position. Parameters , , 1 ,i i iξ ξ ξ= − denote 
parameters in general case for recognizing joints 
between bodies ( 1iV − ) and ( iV ), ( 1,iξ = -prismatic,0-
cylindrical joint). The geometry of the system is defined 
by the unit vectors ie  and the position vectors iρ

  and iiρ
  

expressed in local coordinate systems 
i i iiC ξη ζ  are 

connected to mass centers of bodies in a multibody 
system [13,14]. Unit vectors , 1, 2,3ie i =

  are describing 
the axis of rotation  of the 1, 2,3i = -th segment with 
respect to the previous segment, and iiρ

 denotes a vector 
between two neighboring joints in a multi body system, 
while the position of the center of mass of i-th segment 
is expressed by vectors iρ

 . For the entire determination 
of this system, it is necessary to specify masses mi and 
tensors of inertia CiJ  expressed in local coordinate 
systems. Dynamic equations of motion for the robot 
system can be obtained by applying Lagrange equations 
of the second kind in the covariant form as follows:    
                                                                                      (1) 

( ) ( ),
1 1 1

1,2,...
n n n

a q q q q q Q nγα α αβ γ α β γ
α= α= β=

+ Γ = γ =∑ ∑ ∑       

where the coefficients a aγα αγ=  are the covariant 

coordinates of the basic metric tensor [ ] 3 3a R ×
γα ∈  and 

,αβ γΓ  present Christoffel symbols of the first kind. 
Coefficients of the metric tensor are defined as, [13]:  
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                        (4) 
and Cristoffel symbols are                                            (5)  

,
1 ,    , , 1, , .
2

a a a
n

q q q
βγ γα αβ

αβ γ α β γ

∂ ∂ ∂ 
Γ = + − α β γ = ∂ ∂ ∂ 

          

The generalized forces Qγ can be presented in the 
following expression (6), wherein 

, , , , ,a g v c fQ Q Q Q Qγ γ γ γ γ denote the generalized control, 
gravitational, viscous, spring and friction forces, 
respectively. 

, 1, 2,...,a g v c fQ Q Q Q Q nγ γ γ γ γ γ γ= + + + + =           (6) 

The robot arm dynamics can be written in compact 
matrix form as (where in our case 

, , 0,v c f aQ Q Q Q v= = ): 
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( ) ( ) ( ) ( )( , ) ,gA q q C q q Q A q q n q q v+ − = + =          (7)  

where ( )A q  represents basic metric tensor (or inertia 

matrix), ( ),C q q  is a matrix that includes centrifugal and 
Coriolis effects,, respectively, [15]. 

2.1. State-space representation 

 In  our case, the state vector of the nonlinear robot arm 
system is introduced as: 

[ ] ( ) ( ) 2 3
1 2 1, 2, 3 1, 2, 3, , ,

TT xx x x q q q q q q q q R= = = ∈        so 
one can obtain (7) in state space form: 

( ) ( ) ( ) ( )x t A x B x v t= +

                     (8a) 

( ) ( ) ( )( )( ) ( )
( )

2
1 1

1 1

( ) 0
,

( ) ( )g

x t
A x B x

A x t C x t Q A x t
− −

   
 = =  
− −     



 

 



(8b) 

     ( ) [ ] ( )( ( )) 1 0y t h x t x t= =                                    (8c) 

3 Control Design 
Given biomechanical system is nonlinear MIMO time 
varying system, hence two levels of control laws are 
applied. First level is Computed torque (Inverse 
dynamics, Feedback linearization). Role of this control 
law is to linearize given nonlinear system, so linear 
control law can be applied afterwards. 

3.1  Feedback Linearization (Computed Torque 
control) 

The idea of Computed torque control is to provide exact 
linearization of all nonlinearities in biomechanical 
system via closed loop. In other words direct linear 
connection between input and output is achieved with 
application of Computed torque, It is a special 
application of feedback linearization technique used in 
nonlinear control systems, [16]. Computed torque 
controllers can be very effective, since they provide us 
independent joint control, which can then be used 
together with some classical and modern design 
techniques,such as iterative learning control. The 
nonlinear transformation (9) has converted a complicated 
nonlinear controls design problem into a simple design 
problem for a linear system consisting of n decoupled 
subsystems. A nonlinear controller will be realized as:  

( ) ( ) ( ) ( )
11 ... ,r r

g f fv L L h L h u A q u n q q
−−= + = = ⋅ +    (9) 

where ,g fL L  d en ot e cor r espon d in g Lie 
derivatives,[17]  
A schematic diagram of a feedback linearization 
technique is illustrated in Fig. 3.  
 

 
Fig. 3. Block diagram of exact feedback linearization 
 
So, one can linearize the dynamics in ideal case, as 
follows:  

( ) ( )q t u t=                                    (10) 

where taking into account under the influence of model 
uncertainties ( ) , 1, 2,3k k t iη η= =   we have: 

( ) ( ) ( ) , 1, 2,3k k kq t u t t iη= + =          (11) 

3.2  Advanced open-closed loop iterative learning 
control  

We investigate the problem where the exoskeleton robot  
must repeatedly follow the desired trajectory ( ) n

dq t R∈ , 

[ ], 0, ,t J J T J R∈ = ⊂  in the joint space under the 

influence of model uncertainties, ( ) n
k t Rη ∈ , where T is 

the time duration, k denotes the iteration index.   For the 
linearized dynamics of the robot arm (11), the open-
closed ILC algorithm is suggested which comprises two 
types of control laws: a feed-forward 2sgn PDD  control 
law and a PD feedback law, see Fig. 4.  

 

Fig. 4. Block  d iagr am  of  t he open -closed  
2sgn /PDD PD t y pe of  ILC for  a r obot i c sy stem  

 

( ) ( ) ( )
( ) ( ) ( )1 1 1 1

k ffk fbk

k k k k k k k

p k v k

u t u t u t
u sgn e M sgn e M sgn e M
K e K e

− − − −

= + =
′ ′′= + + +

+ +
 



                         

(12) 

where ( ) ( ) ( )k d ke t y t y t= −  is the trajectory tracking 
error in k − kth iteration, ( )dy t  denotes desired output 

trajectory. 
3 3,p vK K R ×∈  are closed-loop positive-
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definite diagonal learning  matrices and , , ,k k kM M M′ ′′  
are functions   of  , , ,k k kse se se   (Fig.5) respectively 
where we define  the error sums for the k-th  iterative  in 
the form, [18]:  

   ( )
0

T

k kse e t= ∑ , ( )
0

T

k kse e t= ∑  , ( )
0

T

k kse e t= ∑    (13) 

 

Fig. 5. Scheme  of  function ( )k kM f se=  

To reduce the computation and storage size for the 
proposed  ILC control functions are introduced as step 
functions. 

Also, the following  assumptions on the system (11) are 
imposed. 
A1. The desired trajectories ( ) ( ),d dy t x t are 
continuously differentiable on [ ]0,T . 
A2. The system (11) is causal. Specifically, for a given 
desired output trajectory ( )dy t , there exists a  unique 
bounded control input ( )du t such that the system has a 
unique bounded  state ( )dx t  and ( )dy t , i.e:   

     ( ) ( ),d d d(t)= Ax t Bu t+x                    (14) 

                ( ) ( ),d dt C t=y x                                         (15) 
A3. The initial resetting conditions hold for all iterations, 
i.e.   

                    ( ) ( )0 0 , 1,2,3,......k dx x k= =             (16) 

A4.  The uncertainties ( ) ,3
k t Rη ∈  are uniformly 

bounded.  
 
Convergence analysis of the proposed method is omitted 
here, some more details, see [18]. 
 

4 Simulation results and discussion 
Here, we used a main exoskeleton system due to 
biomechanical system with revolute joints, with three  
DOFs, Fig. 2, to solve the trajectory tracking problem in 
joint space. For the simulation, we use the next model 
parameters of robot arm 

1 2 30 , 1.4 , 1.1m kg m kg m kg= = =   where first segment is 
fictive due to decomposition [14]. Numerical simulations 
were carried out to demonstrate the feasibility and 
effectiveness of the proposed advanced ILC PDD2/PD 

type. The desired trajectories are given as polynomial of 
fifth order ( ) 2 3 4 5

0 1 2 3 4 5dq t a a t a t a t a t a t= + + + + +  
with constraints  

1 2 3

(0) 0, 1,2,3,
( ) / 2, ( ) / 4, ( ) / 6,
(0) ( ) 0, 1,2,3,
(0) ( ) 0, 1,2,3,

dk

d d d

dk dk

dk dk

q k
q T q T q T
q q T k
q q T k

π π π
= =
= = =
= = =
= = =

 

 

    (17) 

Model of feedback linearized robotic system in state 
space is given as:  

                                                                                 (18) 

( ) ( ) ( ) ( )

( ) [ ] ( )

0 1 0 0
, 1,2,3

0 0 1 1

1 0

k k k k

k k

x t x t u t t k

y t x t

η
     

= + + =     
     

=



              

where ( ), 1, 2,3k t kη =  are model uncertainties: 

[ ]
1 2

3

3(10 0.
5.

2 )( ) 0.1 , ( ) ,
( ) 0 2 sin( t) 0,
t e ) txp(1- t t
t t

η η
η π

− ⋅= ⋅ =
= ⋅ ⋅ ∈

      (19) 

For the elements of learning gain matrices, ,p vK K  the 
following values are adopted: 
     { } { }10,25,2 , 4.6,15,6 ,p vK diag K diag= =       (20) 

as well as:                                                                    (21) 
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Fig. 6  ( ),k kM se  in function of iteration number   
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Figu r e 6 sh ows the maximum ,kM  kse from 
iteration to 
iteration.  

 

         Fig. 7  Maximum error bounds in  each   i t er at ion  

 
It is clear that the trajectory tracking error decreases 
through the iterations. Also, we can find (see Fig. 7), that 
proposed requirement of tracking performance is 
achieved at   th 50th iteration. 
Fig. 8 shows that the ILC control law drives the 
considered robotic system output on the interval 
t∈[0,5] through the desired trajectory as closely as 
possible after   100 iterations.Also on Fig. 9 presents 
t h e t r ack in g er r or s  ( ) , 1, 2,3ie t i =  of  t h e syst em  
ou tpu t   af t er  100 i t er at ion s.                

 

         Fig.8  The t r ack ing per for m ance of  t he 
sy stem  ou tpu t        ( ( ) , 1, 2,3diq t i = -sol id  l i ne, 

( ), , 1, 2,3iq t i = , ( .−  l i ne) ) 

 

         Fig.9  The t r ack ing er r or s  ( ) , 1, 2,3ie t i =  of  t he 

sy stem   
                    ou tpu t         

5 Conclusion 
In this paper, we studied the tracking problem of 
exoskeleton robotic system robot with revolute joints via 
intelligent control which includes advanced ILC control. 
First, a feedback linearization control technique is 
applied on a given robotic system. Then, the proposed 
intelligent control algorithm takes the advantages offered 
by closed-loop control PD type and open-loop control 
sgnPDD2 type of ILC. Suggested robust ILC algorithm 
is applied to the linearized system to further enhance 
tracking performance for repetitive tasks and deal with 
the model uncertainties. Finally, a simulation example is 
presented to illustrate the effectiveness of the proposed 
robust ILC scheme for a robot arm. 

Authors gratefully acknowledge the support of Ministry of 
Education, Science and Technological Development of the 
Republic of Serbia under the projects TR 35006,III41006. 

References 

1. Global Health Estimates. Geneva: World Health 
Organization,2018,wttps://www.who.int/healthinfo/ 
global_burden_disease/en/ 

2. N.Lossef f ,Ed ., Neurological Rehabilitation of 
Stroke, (Taylor&Francis,UK,2004,) 

3. A.Rober t ,W.Teasel l ,L.Kal r a,AHA/ ASAJ.35
,2 ,3 (2004)  

4. B. T. Volpe, H. I. Krebs, N. Hogan,Adv. in Neuro.  
92, (2003) 

5 . H.I. Krebs, B.T. Volpe, M.L. Aisen, N. Hogan, J. of 
Rehab. Res. and Devel.37,6 (2000) 

6 . H.S.Lo, S. Q. Xie, Med. Eng.& Phys. 34, (2012) 
7 . S.Arimoto, Kawamura S., Miyazaki F., J.of Rob. 

Sys., 2,1,(1984)   
8 . Ahn H.S., Moore K., Chen Y., Iterative learning 

control robustness and monotonic convergence for 
interval systems, Springer-Verlag London Limited, 
London, (2007) 

 
    

 
, 0 (2019)MATEC Web of Conferences https://doi.org/10.1051/matecconf/2019292 29201010

CSCC 2019

10 108

5



 

 

9. J.X Xu, S. K. Panda, T. H. Lee, Real-time Iterative 
Learning Control, Design and Applications, 
Springer-Verlag London, (2009) 

10. M.Lazarević , Sci. Tech. Rev., 64,1, (2014) 
11. M.Lazarević , Panagiotis T., J. of Vib. and Cont., 

22, 8, (2016) 
12. T.C. Freeman, Rogers E., Burridge J. H., Hughes 

Ann-Marie, Meadmore K.L., Iterative Learning 
Control for Electrical Stimulation and Stroke 
Rehabilitation, Springer Briefs in Control, 
Automation and Robotics, (2015) 

13. V.Čović, M. Lazarević, Robot Mechanics, Belgrade, 
Fac. of Mech. Eng. (in Serbian), (2009) 

14. M. Lazarević, FME Trans. 34, 2, (2006) 
15. B.Siciliano, L. Sciavicco, Villani, L., Oriolo, G.: 

Robotics, Springer-Verlag, London, (2009) 
16. H. Khalil, Nonlinear Systems, Prentice Hall, Upper 

Saddle River, (2002) 
17. J.J.Slotine,Applied nonlinear control. Vol. 199: 

Prentice-Hall Englewood Cliffs, NJ.,(1991) 
18. Wang Y., Proc.of the 10th World Cong. on Int. 

Cont.and Aut., (2012)  

 
    

 
, 0 (2019)MATEC Web of Conferences https://doi.org/10.1051/matecconf/2019292 29201010

CSCC 2019

10 108

6


