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Abstract: 
  
In this paper a fractional order lag compensator is introduced for the control of robot 

manipulators. Mathematical model of the robotic system is derived using the Rodriquez approach 
which, due to a high gear ratio between the actuators and robot joints, reduces to a linear model. 
Then, fractional order compensator is designed according to the symmetrical optimum principle. 
Optimal values of controller parameters give good performance characteristics and high 
robustness of the system, together with an iso-damping property of the closed loop reference 
response. The effectiveness of the proposed method is illustrated through the control simulation 
of three degrees of freedom robot manipulator.        

 
Keywords: robust control, robot manipulator, fractional-order lead/lag compensator, symmetrical 
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1. Introduction 
 
Robotics is a relatively young field of modern technology that crosses traditional engineering 

boundaries. Understanding the complexity of robots and their applications requires knowledge of 
electrical, mechanical and systems engineering, computer science and mathematics. The science 
of robotics has grown tremendously over the past twenty years, fueled by rapid advances in 
computer and sensor technology, as well as theoretical advances in control theory. At the present 
time, the vast majority of robot applications deal with industrial robot arms operating in factory 
environments. Robots are being deployed to accomplish tasks having strict requirements of 
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accuracy, precision, repeatability, mass production and quality in addition to ease of human effort 
and cost effectiveness. Typical example applications of robots in industry include welding, 
packaging, arranging, cutting, paint spraying, moving and sanding. These tasks call for the 
deployment of manipulator-based robots in industry.  

Design of a controller for a manipulator is a complex task. Research community reports few 
reviews on control strategies for robotic manipulators. A good survey of early results is given by 
Sage et al. in [1]. Many of these control algorithms follows linear approach from one simple 
reason. Namely, linear controllers are designed for manipulators whose dynamics are more or less 
linear (manipulators with high gear ratios, gravity compensation devices, etc.), or have been 
(partially) linearized by feedback linearization techniques. This way, nonlinearities become less 
important, dynamic coupling effects from the motion of other joints can be neglected and robot 
control can be decoupled into independent joint control. That is why classical PID controller has 
been used as a usual tool for the stabilization of robot manipulators in real applications [2-4].  

On the other side, during the last 20 years, efforts have been made to implement the fractional 
calculus techniques in control theory. The fractional calculus is theory of integrals and derivatives 
of arbitrary order, i.e. orders other than integer [5]. In most cases, objective is to apply the 
fractional order control to improve the control system characteristics. Intuitively, with non integer 
controllers there is higher flexibility in adjusting the system performances than using integer 
order controllers. Fractional order (FO) controller gives us tool to design robust control system 
with less parameters to tune. This way, FO controller with few tuning knobs achieves robustness 
which is similar to using very high order controllers. Also, the tradeoff between system 
performances and stability is more straightforward to achieve by introducing fractional order 
control. In the literature, different structures have been introduced for linear, time invariant, 
fractional order controllers. Some of the most common include CRONE controller [6,7], PI D   
controller [8], and fractional lead/lag compensator [9-11]. 

The transient and steady state system response can be improved with (fractional) lead/lag 
compensator, and by adjusting the system’s phase and gain margin. It is well known the phase 
margin defines the relative stability and influences on the transient response characteristics, while 
the speed of system response is proportional to the bandwidth of the system. So, by changing the 
gain crossover frequency one could reshape the system’s bandwidth and its speed response. The 
transfer function of fractional order (FO) lead/lag compensator, which is a generalization of the 
classical compensator, is given by: 

  1
,

1C

as
C s K

bs

    
 (1) 

where CK  is the compensator gain,  is the fractional order of the controller ( 0)  , 1 a  is the 

zero frequency, and 1 b  is the pole frequency ( a b  for a lag compensator). The influence of 
parameter   is remarkable. With lower value of   the distance between the zero and pole 
becomes longer and vice versa, and contribution of phase at a certain frequency stands still. 
Because of this fact the controller is more flexible and allows considerations of robustness in the 
design. For example, with some control techniques an iso-damping property of the closed loop 
system can be achieved [7,12]. The fractional order lag compensator is commonly used to 
improve tracking performance and disturbance attenuation at low frequencies. For a b  we 
obtain lead compensation which is used to improve phase margin. In this paper, fractional order 
lag compensator is designed to enhance closed loop performance of robot manipulator.  

Most of the methods for tuning linear controllers are based on solving specific optimization 
problems considering main four sensitivity functions [13]. Besides these, alternative methods 
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such as symmetrical and non-symmetrical optimum have been developed. A symmetrical 
optimum method originates from Kessler’s work in [14]. Later it was exploited in several papers 
[15-17], and herein it will be used for tuning the parameters of fractional order lag compensator. 
The idea behind the symmetrical optimum principle is that phase frequency characteristics    , 

i.e. characteristic    pm 180       of the open-loop transfer function is symmetrical 

relative to the straight line perpendicularly drawn to the frequency axis in gain crossover 
frequency ( gc ,0 dB). The use of this idea is illustrated in Figure 1. By using this fact, it is 

possible to form symmetrical criterion which may be stated as: several odd-order derivatives of 
phase characteristic of open-loop function should tend to zero in the gain crossover frequency 

gc . Then, parameters of fractional order compensator can be obtained by solving optimization 

procedure with respect to symmetrical criterion and specified phase margin [18,19].  

 

 
Fig. 1. Illustration of symmetrical optimum principle. 

The rest of the paper is organized as follows. In Section 2 mathematical model of robot 
manipulator with actuator dynamics is derived using the Rodriquez approach. The optimization 
problem setup for the given model is presented in Section 3, including the symmetrical optimum 
constraints. The efficiency of the fractional order controller is demonstrated in Section 4 through 
the simulation of NeuroArm robotic manipulator. Section 5 concludes the paper. 

 
2. Mathematical model of robot manipulator with actuator dynamics 

 
The mechanical structure of a robot manipulator consists of a sequence of rigid bodies (or 

links) interconnected by means of joints. In this paper Rodriquez approach [20] is used to obtain 
equations of motion. The open chain system of rigid bodies (V1), (V2), … , (Vn)  is shown in 
Figure 2. The rigid body (V1) is connected to the fixed stand. Two neighboring bodies (Vi-1) and 
(Vi) are connected together with a joint (i), which allows translation or rotation of the body (Vi) in 
respect to body (Vi-1). The values qi represent generalized coordinates. The reference frame Oxyz 
is inertial Cartesian frame, and the reference frame O  is local body frame which is 
associated to the body (Vi). At initial time, the corresponding axes of reference frames were 
parallel. This configuration is called reference configuration and it is denoted by (0).  
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Fig. 2. Open chain of the rigid bodies system. 

The geometry of the system is defined by the unit vectors ie


 and position vectors i


 and ii


 

expressed in local coordinate systems i i i iC    connected to mass centers of bodies in a 

multibody system. Unit vector ie


, i=1,2, … , n is describing the axis of rotation (translation) of 

the i-th segment with respect to the previous segment, and '
1ii i iO O 


  denotes a vector between 

two neighboring joints in a multibody system, while position of the center of mass of i-th segment 

is expressed by vectors '
1ii i iO C 


. For the entire determination of this mechanical system, it is 

necessary to specify masses mi and tensors of inertia JCi expressed in local coordinate systems.  

If we have a kinetic energy of the system in terms of generalized coordinates and its 
derivatives, one can write dynamic equations of the system in terms of Lagrange equations of the 
second kind. The motion imposed to a manipulator’s joint is realized by an actuating system 
which usually consists of a DC servomotor and a transmission (gear). After some transformations, 
equations of motion of a rigid robot together with an actuating system can be written as 

     2 2, ,m mA N J C N B       g mq q q q q Q Q  (2) 

wherein: 

n  is a number of bodies in the system, 

  nt q  is the vector of the generalized coordinates,  

  n nA q  represents basic metric tensor (or inertia matrix),  

 , n nC  q q  is a matrix that includes centrifugal and Coriolis effects,  

ngQ  and nmQ  are gravity term and torque vectors applied to the joints, respectively,  

N  is the n n  diagonal matrix of the gear ratios,  

mJ  is the n n  diagonal matrix containing the effective motors inertias, and finally,  

mB  is the n n  diagonal matrix containing the viscous friction coefficients of the motors.  

For details of the calculation of the basic metric tensor and matrix  ,C q q  for robot 

manipulators, the reader is referred to [20]. The torques mQ  are supplied by n actuators. In the 
case of a rigid robot, the standard equations describing the transmission of the gears are 
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,   ,m mN N mq q Q   (3) 

wherein mq  represents the positions of the actuators shafts, and m  is the vector of torques 
supplied by the actuators. Combining (2) with (3) yields the following model of the actuators 
system 

,m m m m m lJ B   q q    (4) 

wherein       12 1,l m mN A C N
      gq q q q q Q  is the vector of torques resulting from the 

robot manipulator and acting on the motors shafts. A block diagram of the resulting model is 
shown in Figure 3. In this approach, the positions of the actuators shafts are the controlled 
variables. One advantage of this approach is that the model of actuators used for the design is 
linear and decoupled. Another advantage is that torque l  resulting from the robot links can now 
be regarded as disturbance. This assumption is justified if actuators with high gear ratios are used 
(typically N  attains values from a few tens to a few hundred). This way, we can neglect 
completely the nonlinear dynamics of the robot and use linear model instead.   

 
Fig. 3. Block diagram of the DC motors mechanical part. 

However, in reality the robot is not controlled by torque signals, but by voltage signals. 
Consequently, in order to have a more realistic model of the robot, it may be necessary to include 
the electrical model of the actuators. The complete block diagram with actuator dynamics is 
shown in Figure 4.  

 
Fig. 4. Block diagram of the DC motors dynamical model. 

As it can be seen from the figure, the electrical model of DC actuator is given by 

,m
e

dd
R L K

dt dt
  

qi
i u   (5) 

where R  is the n n  diagonal matrix containing the resistances of the armature circuits, ni  
represents the vector of the armature currents, L  is the diagonal matrix of the armature 
inductances, eK  is the diagonal matrix containing the back EMF constants, and u  is the vector of 
the armature input voltages. The vector of torques supplied by the actuators is  

,m mK i  (6) 

where mK  is the diagonal matrix containing the motor torque constants. Now, the differential 
equation describing the motors’ mechanical dynamics can be rewritten as Eq. (4).  
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Since the original nonlinear system resulted into n linear, decoupled subsystems, it is enough 
to observe one arbitrary actuator (joint), and use obtained results for the control system design of 
other joints. Based on Figure 4, the relationship between the control input u  and the position 
output mq  of the j-th actuator  1 j n   can be expressed in a unified manner by the transfer 

function  

      
1

,
1

m
p

m m m e

k K
G s

s r j s b k k s s Ts
 

   
  (7) 

where  

1
,   .m

e m e

j r
K T

k k k
   (8) 

and ,m mk K  ,e ek K  ,m mj J  ,m mb B  ,L  r R  and 0.mb   The second order transfer 
function is reduced to a first order model because response of the system is characterized by the 
dominant pole (the other pole is located far left in the s-plane, and its influence can be neglected). 
Now, the fractional order lag compensator (1) can be designed for controlling the process  pG s  

given by (7)-(8), and its parameters can be obtained using the symmetrical optimum principle. 
 

3. Symmetrical optimum (SO) design method 
 
The control system scheme with fractional order compensator  C s  is shown in Figure 5 

with following notation:  pG s - process transfer function,  r t - reference signal,  y t - output 

signal,  u t - control signal,  d t - disturbance,  n t - measurement noise. Reference response 

signal can be additionally improved through feed-forward filter denoted with  .F s  

 
Fig. 5. The proposed control structure with fractional order compensator. 

The open loop transfer function of the system in Fig. 5 is given by  

     ok pL s C s G s .                                           (9) 

As stated before, the idea behind the symmetrical optimum principle is that phase frequency 
characteristics     of open-loop function is a symmetrical function in   neighborhood of 

gain crossover frequency gc . Symmetrical criterion for function     can be expressed in the 

following form  

 
0,    1,3,5,

gc

p

p p
p

 

 






  


   (10) 

Since relation (10) cannot be valid for all values of integer p, it is suitable to use 1,3p   

which will ensure sufficient degree of symmetry of frequency characteristics of okL  around gain 
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crossover frequency gc . Another constraint of the closed loop system is desired phase margin 

defined by  

     pm ok180 ,    1.gc gc gcL j         (11) 

Adjustable parameters of fractional order lag compensator are ,  ,  CK a b  and fractional order 
parameter .  The objective function is given in the form of high-order derivative of phase 
characteristic of open-loop transfer function. Considering relations (10)-(11), optimization 
procedure of FO compensator can now be given in the following form 

 

 
 

 

2

3, , ,

ok

*
pm

1

min

1,

180 ,

, , , , 0,

CK a b

gc

gc

C gc

L j

K a b






  

  



  



  (12) 

and solved by using some of the standard nonlinear optimization methods. Initial values of 
parameters of FO compensator can be empirically selected. Now, the effectiveness of the 
proposed design procedure will be tested on a process  pG s  representing a typical DC motor.  

 
3.1 Application of the SO method for the control design of a DC motor 

 
The DC motor provided for this simulation is RE 36  36 mm , brushed, 70 Watt from 

Maxon motors. The parameters used in the modeling are extracted from the data sheet of this 
motor. Only the following parameters relevant for the model are used: 265.2 gcm ,mj   

1.71 ,r    44.5 mNm ,mk A  215 rpm .ek V  Based on these parameters and (7)-(8), the 

 pG s  becomes 

   m

22.515
.

0.0056409 1
G s

s s



 (13) 

Considering the next design specifications: steady state error 0,ss   gain crossover 

frequency 10rad sgc   and phase margin *
pm 45 ,    and applying the optimization procedure 

given by (12), the following parameters of FO compensator are obtained 

6.6517,  0.0114243,  21.7816,  0.503186.CK a b      (14) 

So, the transfer function of optimal fractional order lag compensator is given as 

 
0.503186

opt

0.0114243 1
6.6517 .

21.7816 1

s
C s

s

    
  (15) 

The Bode plots of  opt ,C s  mG s  and      opt opt mL s C s G s  are shown in Figure 6. It is 

clear that the structure proposed meets the condition of phase and magnitude given by design 
specifications. Moreover, the fractional compensator  optC s  guarantees the robustness of the 

system. Namely, in a wide range around gain crossover frequency 10rad sgc   phase plots of 
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 optC s  and  optL s  are nearly flat, and hence the phase margin  pm   is nearly constant. This 

behavior ensures maximum stability and robustness for wide variations in the plant gain.  

 
Fig. 6. Bode plots of the compensator  opt ,C s  process  mG s  and open-loop transfer function  opt .L s  

The same optimization procedure described above can be used for designing control systems 
of other DC motors actuating robot links. 

 
4. Simulation results 
 

Now, the effectiveness of the proposed control method was examined by computer simulation 
of a manipulator robot. The manipulator used for simulation is a NeuroArm robotic arm, shown in 
Figure 7. It is an integral part of the Laboratory of Applied Mechanics, at Faculty of Mechanical 
Engineering in Belgrade.  

  
Fig. 7. Laboratory NeuroArm robotic manipulator. 

This arm has seven degrees of freedom. First three revolute joints are used for positioning of 
the end-effector, and the following three joints form the spherical wrist used to accomplish end-
effector’s orientation. The last joint is the gripper. Since the goal of this paper is designing a 
controller for positioning tasks, we will simplify our robotic arm to three degrees of freedom 
(DOF) model considering only the first three joints.  

The robot links are actuated by the same type of the DC motor whose transfer function is 
given with (13). Hence, all three FO compensators will have the same parameter values which 
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will give optimal controller in the form of (15). Since  optC s  is an irrational transfer function, it 

is difficult to implement this fractional order element in the time domain simulations. Thus, it is 
necessary to approximate FO compensator with a rational transfer function in the s-domain. 
Herein, we considered a simple rational representation for fractional order compensators of the 
form (1) using Padé approximation [21]. The Padé approximation is widely used in numerical 
calculations of non-rational functions because it provides better approximations compared to 
some other available methods. So, the fourth order Padé approximation of the transfer function 
(15) of fractional order compensator is given by  

       
    pade

0.16926 37.27 5.673 1.434 0.3108
.

12.88 2.79 0.7055 0.1076

s s s s
C s

s s s s

   


   
  (16) 

The mechanical coupling between the servomotor and actuated joint is realized by a pair of 
spur gears. The gear reduction ratio for each of the first three links is r 230.N   As mentioned 
before, the presence of a high reduction ratio tends to linearize the system, allowing the nonlinear 
coupling terms in the dynamic model to be neglected. 

 
Fig. 8. Reference step responses of the three DOFs robot manipulator.  

 
Fig. 9. Control signals for the three DOFs robot manipulator. 

Since the controller  optC s  (and its approximation (16)) gives constant, but large overshoot 

of 30% , in order to reduce it, we introduced feed-forward filtering of the command signal in the 
form    1 0.5 1 .F s s   Now, using compensator approximation (16) in simulation, we obtained 

reference step responses of first three joints which are depicted in Figure 8, and their 
corresponding control signals are shown in Figure 9. As we can see, the simulated step responses 
show no overshoot. Having in mind flatness of the phase curve (in Fig. 6) around ,gc  this 
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behavior is guaranteed for wide variations in the process gain. Hence, the fractional order lag 
compensator consolidates a good dynamic performance with an improved robustness. 

5. Conclusions 

This paper deals with the design of the fractional order lag compensator. Parameter values of 
fractional controller are obtained in optimization procedure by using the symmetrical optimum 
principle. Thanks to the parameter ,  the fractional order of the controller, it has been proved 
that the lag region for the fractional structure is much wider than for the conventional one. 
Because of this fact the controller is more flexible and allows considerations of robustness in the 
design. A robust closed loop response with no overshoot is obtained in a control simulation of 
three degrees of freedom robot manipulator.  
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