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Abstract: 
  

In this paper we have analyzed the standard linear solid model (Zener model) of viscoelastic 
materials. A one-dimensional analysis was executed analytically (in MATLAB) and numerically 
(in ABAQUS), and corresponding graphs have been produced. The fractional differential form of 
the Zener model was then implemented, as it has proven to be a better match for the experimental 
test results for viscoelastic materials. Finally, all of the results were compared and discussed.  
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1. Introduction  
 

Viscoelastic constitutive models [1] have been in the center of attention of the scientific 
community, as the possibilities of computational analysis are on the rise and many materials are 
described more accurately by these models, in comparison to the pure elastic or viscous models. 

There are many materials which display a stress relaxation or creep when a constant load or 
deformation is applied. These qualities, along with the occurrence of hysteresis, have been 
described by various viscoelastic models (Maxwell, Kelvin-Voigt, Zener, etc.) [4,5,6]. The 
adequacy of a certain model relies on the properties of the observed material.  

In this paper, the Zener model will be analyzed. This model is also known as one of the 
standard linear solid models. All of the models are based on springs and dashpots, which are 
connected in different ways to form an approximate structure with its corresponding relationship 
between stress and strain (constitutive model in the form of a differential equation) [6]. The Zener 
model is also applied in ABAQUS, commercial software which can be used for finite element 
method (FEM) [2] structural analysis [7].  

However, recent studies have shown that fractional viscoelastic constitutive models are in 
better compliance with experimental test results [4,6]. Hence, the implementation of fractional 
calculus [3] to these structural problems is vital and a subject of current scientific enquiry. 

 
2. Zener model 
 

The Zener model is shown in Fig. 1. It consists of one spring which is tied in parallel with a 
second spring and a dashpot, which are tied in series. This standard linear solid model is widely 
used, as it shows a good compliance with experimental data of many different materials. 
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Fig. 1. Zener model. 

 
The constitutive equation of this model is [6]: 
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These coefficients have to obey the following restrictions, so that the second law of 
thermodynamics would be satisfied [8,9,10]:  
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After the Laplace transform and taking into consideration that there is a constant deformation, 
which corresponds to a strain:  
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where )(tH  is the Heaviside step function, the relaxation modulus is obtained: 
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The coefficients can also be written in the next form:  
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3. Viscoelastic constitutive model in ABAQUS 

 
In ABAQUS, the hereditary integral [4] is used to define the relationship between stress and 

strain, in the general sense of the possibility of a gradually increasing load: 
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where *E  is the relaxation function corresponding to axial loading,  denotes the strain, t is 
reference time, and  is current time.  

The dimensionless relaxation modulus is defined by a Prony series expansion [7]: 
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which is, for the Zener model, according to the equation (5), reduced to [5]:  
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According to sample material constants given in [5], the non-symblic form of the previous 
equation is: 
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From the equation (10), we can calculate the material constants which are required in 
ABAQUS: 
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These coefficients comply with the restricitons (3). ABAQUS also requries the Poisson ratio 
value, which can be calulated using the known relationship among Young modulus, Poisson ratio 
and Bulk coefficient [5]: 

4833.0 ,                                           (14) 

Thus, we have obtained all the neccesary material constants for numerical analysis in 
ABAQUS. 

 
4. Fractional Zener model 
 

The fractional calculus is introduced simply by substituting the integer order derivatives with 
derivatives of order , which can be any real number between 0 and 1,  (0,1). Thus, the 
constitutive differential equation of the Zener model takes the form: 
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After the Laplace transform, and taking into account the strain (4), relaxation modulus is 
obtained [6]: 
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where E  is the Mittag-Leffler one-parameter function, which for the large values of the 

variable  t , reduces to [8]: 
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where   is the Euler’s Gamma function. However, as stated in [12], recent studies have 
shown that the Mittag-Leffler function for the large values of the variable can also be reduced like 
so: 
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The previous equation (18) will be used for results comparison, denoted as “fractional A”.  
Following the generalization principle undertaken in [4] for the Maxwell model, a similar 

equation to the equation (17) is obtained for the Zener model:  
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This equation will be denoted as “fractional B”.  

The comparison between the results of the equations (18) and (19) for different values of  is 
shown in Fig.2.  

 
Fig. 2. Relaxation modulus comparison for analytical, ABAQUS and fractional solutions. 

 

It is obvous that, as the value of  approaches 1  1  the values of these two equations 
coincide. 
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5. Results  

 

The results are shown in Fig.3. As expected, the results obtained from ABAQUS coincide 
completely with the results of analitical calculation undertaken in MATLAB. The results obtained 
from the fractional forms of the constitutive model equation assimptoticly approach the previous 
results, for the large values of time. However, that does not mean that these results are less 
accurate, as it has been proven that the power law is in a better accordance with the experimental 
test results, than the exponential law [4,6].  

 
Fig. 3. Relaxation modulus comparison for analytical, ABAQUS and fractional solutions. 

 

 
6. Conclusions 

 
In this paper one of the conventional viscoelastic constitutive models was presented (the 

Zener model). Its implementation in ABAQUS, via Prony series, was explained and the solution 
for one-dimensional problem was presented. It was shown that this solution coincides completely 
with the analytical solution. Furthermore, fractional calculus was introduced to said model, and 
solved with the application with two approximations of the Mittag-Leffler function. All of the 
results were compared. This analysis proved to be very suggestive and, in further work, the 
experimental test data will be produced and the final comparison executed. The two-dimensional 
and three-dimensional models will be analyzed, as well.   
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