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Abstract: 
This paper focuses on the effect of the control system parameters on the convergence speed of 

two constrained state space Iterative Learning Control (ILC) algorithms: Bounder Error 
Algorithm (BEAILC) and Constrained Output Algorithm (COILC), applied to the nonlinear 
model of a 3DOF robotic manipulator in presence of recurring disturbance. Analysis and 
comparison of previously mentioned algorithms were conducted through simulations. The 
obtained results have shown that COILC algorithm converges faster than BEAILC algorithm, as 
the BEAILC restricts the output trajectory more rigorously. Simulations have shown that change 
in feedback parameters’ values has higher impact on the iteration interruptions (increase will 
lower the number of interruptions), while the learning parameters have higher impact on the 
whole ILC procedure duration (decrease will require more iterations to achieve the desired 
tracking accuracy). Additionally it’s been shown that both algorithms successfully rejected the 
recurring disturbance. 
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1. Introduction

Iterative learning control (ILC) is an intelligent control method which, through repetition in
every iteration, using the information from previous trials, improves the control signal for the 
next trial in order to decrease (eliminate) the tracking error of a repetitive task. Proposed for the 
first time by Arimoto in 1984, recently it's gained researchers' attention as a viable control method 
for industrial robots (manipulators), which are required to execute repetitive tasks over and over 
with high precision. As the only information that ILC is learning from is the trajectory tracking 
error, it can compensate for unmodeled dynamics and recuring disturbances [1-6]. 

In this paper two nonlinear constrained state space ILC methods are considered for a nonlinear 
3DOF robotic manipulator model: Bounded Error Algorithm (BEAILC) and Constrained Error 
Algorithm (COILC), which are compared through simulations. This paper extends on the [14], 
with addition of the disturbances. 

2. Constrained State Space ILC

In reality robots have space boundaries, velocity limits and other saturations that make them
constrained state space systems, thus all operations performed by those manipulators are within 
the constrained state space. 
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Violation of constraints, that can occur if the robot is following the desired trajectory close to 
the state space limits, can cause failure of the ILC trial as it will be interrupted and could 
potentially cause damage to the robot or its surroundings (Fig. 1). One of the problems of the 
standard ILC procedure is the transient error growth. It is possible that in the first several 
iterations the tracking error grows significantly before it starts to converge to zero, potentially 
violating the operative space boundaries. As solutions to this transient error growth problem, two 
of the following algorithms are proposed: 

• Bounded Error Algorithm (BEA)

• Constrained Output Algorithm (CO)

Both algorithms are based around the idea of terminating the tracking process if the
generalized coordinates boundaries are violated and their convergence is proven in [8]. 

Fig. 1. Violation of generalized coordinates constraints [7] - left, Block diagram of BEAILC and COILC 
algorithms - right [14] 

Differential equations of motion for the given robotic system are obtained in the identical 
covariant form of Lagrange equations of the second kind as [9, 10]: 

�𝑎𝑎𝛾𝛾𝛾𝛾(𝑞𝑞)�̈�𝑞𝛾𝛾 + ��𝛤𝛤𝛾𝛾𝛼𝛼,𝛾𝛾(𝑞𝑞)�̇�𝑞𝛾𝛾�̇�𝑞𝛼𝛼 = 𝑄𝑄𝛾𝛾

𝑛𝑛

𝛼𝛼=1

𝑛𝑛

𝛾𝛾=1

,  
𝑛𝑛

𝛾𝛾=1

𝛾𝛾 = 1,2, . . .𝑛𝑛 

(2.1) 

where 𝑞𝑞 ∈ 𝕽𝕽𝑛𝑛, �̇�𝑞 ∈ 𝕽𝕽𝑛𝑛 are generalized coordinates and velocities respectively, the coefficients 
𝑎𝑎𝛾𝛾𝛾𝛾 = 𝑎𝑎𝛾𝛾𝛾𝛾 are the covariant coordinates of the basic metric tensor 𝐴𝐴(𝑞𝑞) = ( ) nxna q a Rαβ = ∈ 
and symbols Γ𝛾𝛾𝛼𝛼,𝛾𝛾 denote Christoffel symbols of the first kind which are defined as: 

𝛤𝛤𝛾𝛾𝛼𝛼,𝛾𝛾 = 1
2
�𝜕𝜕�𝑎𝑎𝛽𝛽𝛽𝛽�

𝜕𝜕𝑞𝑞𝛼𝛼
+ 𝜕𝜕�𝑎𝑎𝛽𝛽𝛼𝛼�

𝜕𝜕𝑞𝑞𝛽𝛽
−

𝜕𝜕�𝑎𝑎𝛼𝛼𝛽𝛽�
𝜕𝜕𝑞𝑞𝛽𝛽

� ,   𝛼𝛼,𝛽𝛽, 𝛾𝛾 = 1, … ,𝑛𝑛.         (2.2) 

The generalized forces are 𝑄𝑄𝛾𝛾 = 𝑄𝑄𝛾𝛾
𝑔𝑔 + 𝑄𝑄𝛾𝛾𝑐𝑐 + 𝑄𝑄𝛾𝛾

𝑓𝑓 + 𝑄𝑄𝛾𝛾𝑣𝑣 + 𝑄𝑄𝛾𝛾𝑎𝑎, 𝛾𝛾 = 1,2, . . . ,𝑛𝑛 where Qγ
g ∈ ℜ𝑛𝑛,

𝑄𝑄𝑐𝑐 ∈ ℜ𝑛𝑛, 𝑄𝑄𝑓𝑓 ∈ ℜ𝑛𝑛 and 𝑄𝑄𝑎𝑎 ∈ ℜ𝑛𝑛 are generalized gravity, elastic, dry friction, viscous friction and 
actuator torques (control signals in our case), respectively. The robot arm dynamics can be 
presented in compact form as:  

𝑎𝑎(𝑞𝑞)�̈�𝑞 + 𝑛𝑛(𝑞𝑞, �̇�𝑞) = 𝑄𝑄  (2.3) 
The sufficient condition for both algorithms' convergence: 

‖𝐼𝐼 − 𝐿𝐿𝐴𝐴−1‖ ≤ 𝜌𝜌 < 1. (2.4) 
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For a high convergence rate, the learning operator is chosen as estimated inertia matrix 
 𝐿𝐿(𝑞𝑞) ≡ �̂�𝐴(𝑞𝑞), as advised in [11]. 

2.1 Bounded Error Algorithm 

Bounded Error Algorithm is tracking the error norm during the iteration and it terminates it as 
soon as the error norm reaches its limit. Correction of the control signal is affected only by 
information collected before the interruption. 

BEA application results in the output trajectory laying inside the hypercylinder with radius of 
𝜀𝜀  around the desired trajectory during each iteration. Downside of this algorithm is the over 
restriction of trajectory in the areas where the trajectory is far from its limits, causing more 
frequent interruptions of the ILC procedure [12, 13].  

2.2 Constrained Output Algorithm 

Constrained Output Algorithm only limits the maximum and minimum values of the output 
trajectory, allowing deviations from the desired trajectory in the safe areas. This results in faster 
convergance, when compared to BEA, due to more relaxed restrictions [8].  

3. Simulation results

Trajectory tracking simulations of 3DOFs robotic system (Table 1) were conducted in
MATLAB and Simulink environment, using the Runge-Kutta method (ODE4), where the 
simulation step was 0.00001.  

𝑒𝑒𝑖𝑖 𝜌𝜌𝑖𝑖𝑖𝑖 𝑚𝑚 [kg] 𝑙𝑙 [m] 

𝑒𝑒11
(1) = � 

0
0
1

 � 𝜌𝜌11
(1) = �

0
0

0.15
 � 0.15 0.15 

𝑒𝑒22
(2) = �

−1
0
0

 � 𝜌𝜌22
(2) = �

0
0

0.5
 � 0.5 0.5 

𝑒𝑒33
(3) = �

−1
0
0

 � 𝜌𝜌33
(3) = � 

0
0.35

0
 � 0.35 0.35 

Table 1. Robot configuration and it’s parameters 

The feedback term used in both algorithms is: 

𝑢𝑢𝑓𝑓𝑓𝑓 = �̂�𝐴(𝑞𝑞)��̈�𝑞𝑑𝑑(𝑡𝑡) + 𝐾𝐾𝑣𝑣��̇�𝑞𝑑𝑑(𝑡𝑡) − �̇�𝑞𝑘𝑘(𝑡𝑡)� + 𝐾𝐾𝑝𝑝�𝑞𝑞𝑑𝑑(𝑡𝑡) − 𝑞𝑞𝑘𝑘(𝑡𝑡)�� (3.1) 

where 𝐾𝐾𝑣𝑣 and 𝐾𝐾𝑝𝑝 are feedback gains. 
BEA and CO algorithms can be described through the following steps [8][12], taking into the 

account the feedback term (3.1): 

1. Set the initial iteration number k =  0 and begin the iterative procedure
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2. a) (BEA) - Starting from the initial position 𝑞𝑞𝑘𝑘(0)  =  𝑞𝑞𝑑𝑑(0)  the system is tracking the
desired trajectory under the control 𝑢𝑢(𝑞𝑞, 𝑡𝑡)  =  𝑢𝑢𝑘𝑘(𝑡𝑡)  +  𝑢𝑢𝑓𝑓𝑓𝑓  (𝑡𝑡) while |𝑞𝑞𝑘𝑘(𝑡𝑡) − 𝑞𝑞𝑑𝑑(𝑡𝑡)|   <
𝜀𝜀 and 𝑡𝑡 < 𝑇𝑇. When 𝑡𝑡 = 𝑇𝑇 or for the first 𝑇𝑇𝑘𝑘: 0 < 𝑇𝑇𝑘𝑘 < 𝑇𝑇, ‖𝑞𝑞𝑘𝑘(𝑡𝑡) − 𝑞𝑞𝑑𝑑(𝑡𝑡)‖ = 𝜀𝜀, then the
tracking process is stopped and 𝑇𝑇𝑘𝑘 is set to the stop time of iteration 𝑘𝑘.
b) (CO) - Starting from the initial position 𝑞𝑞𝑘𝑘(0)  =  𝑞𝑞𝑑𝑑(0)  the system is tracking the
desired trajectory under the control 𝑢𝑢(𝑞𝑞, 𝑡𝑡)  =  𝑢𝑢𝑘𝑘(𝑡𝑡)  +  𝑢𝑢𝑓𝑓𝑓𝑓  (𝑡𝑡) while 𝑄𝑄𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛  <  𝑞𝑞𝑖𝑖𝑘𝑘  <
𝑄𝑄𝑖𝑖𝑚𝑚𝑎𝑎𝑚𝑚 , 𝑖𝑖 =  1,2, . . ,𝑛𝑛 and 𝑡𝑡 < 𝑇𝑇. When 𝑡𝑡 = 𝑇𝑇 or for the first 𝑇𝑇𝑘𝑘: 0 < 𝑇𝑇𝑘𝑘 < 𝑇𝑇, 𝑞𝑞𝑖𝑖𝑘𝑘 = 𝑄𝑄𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 or
𝑞𝑞𝑖𝑖𝑘𝑘 = 𝑄𝑄𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛, then the tracking process is stopped and 𝑇𝑇𝑘𝑘 is set to the stop time of iteration 𝑘𝑘.

3. At the end of the current iteration the learning controller updates the input control signals
for the next iteration 𝑢𝑢𝑘𝑘+1 according to the following learning update law:

𝑢𝑢𝑘𝑘+1(𝑡𝑡) = 𝑢𝑢𝑘𝑘(𝑡𝑡) + �
𝐿𝐿�𝑞𝑞𝑘𝑘(𝑡𝑡)�[�̈�𝑞𝑑𝑑(𝑡𝑡) − �̈�𝑞𝑘𝑘(𝑡𝑡) + 𝐿𝐿𝑣𝑣��̇�𝑞𝑑𝑑(𝑡𝑡) − �̇�𝑞𝑘𝑘(𝑡𝑡)�

+𝐿𝐿𝑝𝑝(𝑞𝑞𝑑𝑑(𝑡𝑡) − 𝑞𝑞𝑘𝑘(𝑡𝑡))], 𝑡𝑡 ∈ [0,𝑇𝑇𝑘𝑘];
0, 𝑡𝑡 ∈ (𝑇𝑇𝑘𝑘 ,𝑇𝑇]

(3.2) 

where 𝐿𝐿𝑝𝑝 and 𝐿𝐿𝑣𝑣 are learning gains. 
4. If the overall output error is less than or equal to an acceptable tracking accuracy and 𝑇𝑇𝑘𝑘

equals 𝑇𝑇, then the learning procedure terminates successfully and the optimal feedforward
control signal is 𝑢𝑢𝑘𝑘. Otherwise, set 𝑘𝑘 = 𝑘𝑘 + 1 and go to step 2.

The desired trajectories defined in the space of generalized coordinates for joints are taken 
from [14]: 

𝑞𝑞𝑑𝑑1(𝑡𝑡) = 4𝑠𝑠𝑖𝑖𝑛𝑛(𝑡𝑡), 

𝑞𝑞𝑑𝑑2(𝑡𝑡) = 2𝑐𝑐𝑐𝑐s(𝑡𝑡),   (3.3) 

𝑞𝑞𝑑𝑑3(𝑡𝑡) = 0.8𝑐𝑐𝑐𝑐𝑠𝑠(2𝑡𝑡), 

∀t ∈ [0, T], T = 2π. 

The initial resetting conditions hold for all iterations, that is, 𝑞𝑞𝑖𝑖(0) = 𝑞𝑞𝑑𝑑𝑖𝑖 (0),   �̇�𝑞𝑖𝑖(0) =
�̇�𝑞𝑑𝑑𝑖𝑖 (0) and control in initial iteration is:  

𝑢𝑢0(𝑡𝑡) ≡ 0, 𝑡𝑡 ∈ [0,𝑇𝑇].          (3.4) 

Sufficient condition for convergence is met, when 𝐿𝐿(𝑞𝑞) ≡ �̂�𝐴(𝑞𝑞): 

max
𝑞𝑞𝑖𝑖

�𝐼𝐼 − �̂�𝐴(𝑞𝑞)𝐴𝐴−1(𝑞𝑞)� = 0.9282 < 1, 𝑞𝑞𝑖𝑖 ∈ [−2𝜋𝜋, 2𝜋𝜋] (3.5) 

The rest of the control system parameters (𝐾𝐾𝑝𝑝,𝐾𝐾𝑣𝑣 , 𝐿𝐿𝑝𝑝 и 𝐿𝐿𝑣𝑣) were taken from the previous 
paper, for further comparison [14].  

Generalized coordinates boundaries and control system parameters for both algorithms were 
set so that the simulation results are comparable (matching maximum values). Hypercylinder 
radius for BEAILC algorithm is set as: 𝜀𝜀 = 0.3 

The desired tracking accuracy that has to be obtained by both algorithms �𝑒𝑒𝑚𝑚𝑎𝑎𝑚𝑚𝑖𝑖 � < 𝜇𝜇 is: 

𝜇𝜇 = 0.005 .  (3.6) 

The disturbances affecting the robot’s output trajectory are: 

𝜂𝜂1 = 3𝑡𝑡𝑒𝑒−0.5𝑡𝑡 
𝜂𝜂2 = 1 − 𝑒𝑒−4𝑡𝑡(1 + 4𝑡𝑡)   (3.7) 
𝜂𝜂3 = 0.5(1 − cos 2𝑡𝑡) . 

3.1 First set of parameters BEA and CO 
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Parameters for the first set are chosen as diagonal matrices [13, 14]: 

𝐾𝐾𝑝𝑝 =  120 ∗ 𝐼𝐼 , 𝐾𝐾𝑣𝑣  =  60 ∗ 𝐼𝐼 
𝐿𝐿𝑝𝑝 =  100 ∗ 𝐼𝐼 ,  𝐿𝐿𝑣𝑣  =  20 ∗ 𝐼𝐼     (3.8) 

Fig. 2. Trajectory tracking: a) BEA, b) CO 

Fig. 3. Maximum error norm 

BEA algorithm with (3.8) parameters, obtained the desired accuracy after 19 iterations, with 
maximum tracking errors (Fig. 3): 𝑒𝑒𝑚𝑚𝑎𝑎𝑚𝑚1 =  5.964584554207877e(−04), 𝑒𝑒𝑚𝑚𝑎𝑎𝑚𝑚2  =
 0.002605102606072, 𝑒𝑒𝑚𝑚𝑎𝑎𝑚𝑚3 =  0.003707387054551. 

CO algorithm with (3.8) parameters, obtained the desired accuracy after 13 iterations, with 
maximum tracking errors (Fig. 3): 𝑒𝑒𝑚𝑚𝑎𝑎𝑚𝑚1  =  1.224670704455836e(−04), 𝑒𝑒𝑚𝑚𝑎𝑎𝑚𝑚2 =
 3.931029416956999(e − 04), 𝑒𝑒𝑚𝑚𝑎𝑎𝑚𝑚3  =  0.003784062605802. 
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Fig. 4. Trajectory tracking trough iterations – BEA - left, Iteration duration time - right 

On Fig. 2 the final trajectory tracking can be seen. On Fig. 3 it can be seen that in case of the 
BEA the maximum error norm was capped at the value of ε = 0.3, where the CO algorithm 
allowed for higher deviations from the desired trajectory. Due to more relaxed constrains, 
interruptions were less frequent and more learning information about the trajectory was available, 
which resulted in faster convergence of the CO algorithm (Fig. 4). Both algorithms successfully 
learned to reject repeatable disturbance. 

3.2 Second and third set of parameters BEA and CO 

In case of the third set, feedback and learning gains were tuned separately for individual joints. 

Second set: 
𝐾𝐾𝑝𝑝 =  150 ∗ 𝐼𝐼 , 𝐾𝐾𝑣𝑣  =  80 ∗ 𝐼𝐼 
𝐿𝐿𝑝𝑝 =  70 ∗ 𝐼𝐼 , 𝐿𝐿𝑣𝑣  =  15 ∗ 𝐼𝐼 (3.11) 

Third set: 

𝐾𝐾𝑝𝑝 = �
100 0 0

0 120 0
0 0 130

� ,𝐾𝐾𝑣𝑣 = �
20 0 0
0 40 0
0 0 60

� 

𝐿𝐿𝑝𝑝 = �
65 0 0
0 70 0
0 0 80

� , 𝐿𝐿𝑣𝑣 = �
15 0 0
0 20 0
0 0 45

� (3.12) 

Fig. 5. Maximum error norm - set 2 
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Fig. 6. Maximum error norm – set 3 

Fig. 7. Iteration duration time: set 2 – left, set 3 - right 

BEA algorithm with (3.11) parameters, obtained the desired accuracy after 20 iterations, while 
the CO algorithm with the same (3.11) parameters required 16 iterations (Fig. 5). Number of 
iterations was increased for both algorithms due to lower learning gains (Fig. 7). On the other 
hand, the number of iteration interruptions was decreased due to higher feedback gains. 

BEA algorithm with (3.12) parameters, the desired accuracy was obtained after 13 iterations, 
while the CO algorithm with the same (3.12) parameters required 9 iterations (Fig. 6). In 
comparison with previous (3.12) parameter set where the joint 3 caused most of the iteration 
terminations in case of BEA algorithm (Fig. 6), with this parameter set it can be seen that now the 
joint 2 caused most of the trial terminations. The recurring disturbance was successfully rejected 
as well. More simulation results without the disturbances can be seen in [14]. 

3. Conclusions

From previously shown simulation results, it can be observed that both algorithms
successfully managed to decrease the tracking error under the desired accuracy in the presence of 
the recurring disturbance.  

Due to more limiting constrains, BEAILC algorithm takes more iterations to obtain desired 
tracking accuracy compared to COILC algorithm, which obtains more information from the less 
frequently interrupted iterations. Tuning the learning and feedback parameters for each joint 
individually can help speeding up the convergence, in case of a particular joint causing most of 
the ILC interruptions. Increase in feedback gains can decrease the number of iteration 
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terminations during learning process, while the decrease in learning parameter values will 
increase the number of iterations required to obtain the desired tracking accuracy 

Taking into the account the results from [14], the presence of the recuring disturbance didn’t 
have significant impact to convergence speed of both algorithms in this case.  

4. Acknowledgement

The presented research was supported by the Ministry of Education, Science and
Technological Development of the Republic of Serbia by contract no. 451-03-9/2021-14/200105 
from 05.02.2021 and contract no. 451-03-9/2021-14/200066. 

References 
[1] Ahn HS, Moore K and Chen Y. Iterative learning control robustness and monotonic convergence for

interval systems. 1st ed. London: Springer-Verlag London Limited, 2007.
[2] Arimoto S, Kawamura S and Miyazaki F. Bettering operation of robots by learning. Journal of Robotic

Systems, 1984; 2(1):123-140.
[3] Isao T and Hunag PH. Iterative Learning Control for Trajectory Tracking of Robot Manipulators.

International Journal of Automation and Smart Technology, 2017; 7(3) 133-139.
[4] Lazarević M and Panagiotis T. Robust second-order PD alpha type iterative learning control for a

class of uncertain fractional order singular systems. Journal of Vibration and Control, Sage Journals,
2016;22(8):2004-2018, DOI: 10.1177/ 1077546314562241.

[5] Lazarević M, Mandić P, Cvetković B, et al. Advanced open-closed-loop PIDD2 /PID type ILC control
of a robot arm. In: Proceedings of the INISTA2018 conference, Thessaloniki, Greece, 2018, pp.1-8,
DOI: 10.1109/INISTA.2018.8466308.

[6] Cai Z., Iterative Learning Control: Algorithm Development and Experimental Benchmarking,
University of Southampton, Faculty of Engineering and Applied Science, 2009.

[7] Yovchev K., Delchev K., Krastev E., State Space Constrained Iterative Learning Control for Robotic
Manipulators, Asian Journal of Control, Vol. 20, No. 1, pp. 1–6, DOI: 10.1002/asjc.1680, 2018.

[8] Yovchev K., Delchev K., Krastev E., Constrained Output Iterative Learning Control, Faculty of
Mathematics and Informatics, Sofia University, 2020.

[9] Lazarević, M., Čović. V., Robot Mechanics, Faculty of Mechanical Engineering, Belgrade, 2009, (in
Serbian).

[10] M.Lazarević, M. Cajić Determination of Joint Reactions in a Rigid Multibody System, Two Different
Approaches, Journal FME Transactions, Faculty of Mechanical Engineering, Belgrade, Vol.44. No2,
2016.

[11] Delchev K., Zahariev E., Computer Simulation-Based Synthesis of Learning-Control Law of Robots,
Institute of Mechanics, Bulgarian Academy of Sciences, Sofia, Bulgaria 2008.

[12] Delchev K., Iterative learning control for robotic manipulators: A bounded-error algorithm, Institute
of Mechanics, Bulgarian Academy of Sciences, 2013.

[13] Yovchev K., Finding The Optimal Parameters for Robotic Manipulator Applications of The Bounded
Error Algorithm for Iterative Learning Control, Journal of Theoretical and Applied Mechanics, Sofia,
Vol. 47 No. 4 (2017) pp. 3-11 DOI: 10.1515/jtam-2017-0016, 2017.

[14] Dubonjac A., Lazarević M., State Space Constrained Iterative Learning Control For Robotic
Manipulator With 3DOFs, FME Transactions, Belgrade, Vol. 49 No. 2 (2021), doi:
10.5937/fme2102429D, 2021.

333

https://doi.org/10.1109/INISTA.2018.8466308

	FrontCover letter
	ICSSM Proceedings
	01 FrontCoverBW letter
	02 Org-PaG letter
	Organizers
	Sponsor
	Table of Contents
	Welcome Message
	The Congress is organized by the Serbian Society of Mechanics (SSM) in partnership with: Faculty of Engineering, University of Kragujevac, Faculty of Mechanical Engineering, University of Belgrade, Faculty of Technical Science, University of Novi Sad,...
	Six distinguished plenary speakers will deliver lectures:
	The Congress encompasses six main topics: General Mechanics, Fluid Mechanics, Mechanics of Solid Bodies, Biomechanics, Control and Robotics, Interdisciplinary and Multidisciplinary Problems.
	Also, there are four Mini-Symposia:

	Organizing Committee
	“Analysis of a New Mixed Formulation for Hyperelasticity Using Kirchhoff Stress”
	“Coronary Atherosclerosis Assessment: A New Anatomical, Functional, Morphological and Bio-mechanical Approach”
	“Auxetic and other Metamaterials in Dynamics”
	“Classical Neumann System on Stiefel Manifolds: Integrability, Geometric and Algebraic Aspects, and Linearization”
	“Noether’s Theorem for Herglotz Type Variational Problems Involving Real and Complex Order Fractional Derivatives”
	“Color of turbulence: Stochastic Dynamical Modeling of Turbulent Flows”


	04 TP letter
	Monday 28 June 2021
	Tuesday 29 June 2021
	Wednesday 30 June 2021

	05 CRP letter
	11 General Mechanics
	General Mechanics
	5
	19
	22
	23
	29
	30
	63
	1. Introduction
	2. Theoretical basics
	2.1 Direct transient response analysis
	2.2 Westegaard’s formulation of added mass method

	3. Methodology verification
	4. Fluid structure interaction (FSI) between the dam and accumulation
	5. Conclusion
	Reference

	73
	100
	Acknowledgment: Funding for this work was provided by the Faculty of Technical Sciences of the University of Novi Sad, Project No2021-054.


	12 Fluid Mechanics
	Fluid Mechanics
	32
	45
	48
	52
	53
	74
	88
	101
	106

	13 Mechanics of Solid Bodies
	template
	6
	Molecular dynamics simulations of the rigid-anvil collision test are performed for two different two-dimensional computational setups. In the first setup, that mimics the traditional Taylor test, the slender nanoscale projectiles collide with a rigid ...

	7
	Ever since the 1980s there have been a rise of interest in the size effect, as one of the most pronounced consequences of fracture mechanics. In the present study, the investigation of the size effect is focused on the Weibull CDF of the critical valu...

	33
	Abstract:
	1. Introduction
	2. Theoretical basis of concrete damage plasticity material model
	3. Material model parameter identification
	4. Verification
	4.1 Uniaxial compression test
	4.2 Uniaxial tension test

	5. Conclusions
	References

	34
	USING OF GAP ELEMENT FOR CONTRACTION JOINTS MODELING IN SEISMIC ANALYSIS OF CONCRETE ARCH DAMS
	Miroslav M. Živković1, Nikola B. Jović1, Miloš S. Pešić1, Dragan M. Rakić1, Nikola J. Milivojević2
	Abstract


	42
	44
	51
	56
	60
	62
	64
	70
	WAVES IN COMPOSITE LAYER REINFORCED WITH TWO FAMILIES OF INEXTENSIBLE FIBRES

	76
	3. Experimental Investigation and FEM Simulation of S355 Specimens
	4. Conclusions
	References

	79
	83
	91
	96
	117
	1 . Introduction
	2. Evolution and constitutive equations
	2.1  Geometric preliminaries
	2.2  Hooke’s Law by Homogenization Approach
	2.3  Evolution equation – micro to meso transition

	3. Orthotropic QRI materials
	4.  Classical J2 theory of orthotropic materials

	5.  Diffuse instability
	6  Some conclusions
	Acknowledgement

	120

	14 Biomechanics
	Biomechanics
	20
	37
	38
	57
	58
	59
	66
	71
	72
	2. Methods
	2.1 Basic equations of turbulent flow and k-ω model
	2.2 Finite element formulation of RANS equations and k-ω model


	81
	90
	94
	95
	99
	103
	115
	121

	15 Control and Robotics
	Control and Robotics
	12
	25
	1. Introduction
	2. PI velocity control
	3. Stability analysis
	4. Comparison between PD and PI control for mechanical systems
	5. Localization principle
	6. Example
	7. Conclusion

	89
	1. Introduction
	2. Constrained State Space ILC
	2.1 Bounded Error Algorithm
	2.2 Constrained Output Algorithm

	3. Simulation results
	3.1 First set of parameters BEA and CO
	3.2 Second and third set of parameters BEA and CO

	3. Conclusions
	4. Acknowledgement

	98
	ADAPTIVE ITERATIVE LEARNING CONTROL OF ROBOTIC SYSTEM BASED ON PARTICLE SWARM OPTIMIZATION
	Živković LJ. Nikola1, Lazarević P. Mihailo2, Petrović M. Milica2
	Abstract:
	In this paper, an adaptive iterative learning control algorithm for robotic manipulators is proposed. A simplified robot manipulator model with 3 degrees of freedom is used as control object for verification purposes. The mathematical model is obtaine...
	Key words: robot dynamics, feedback linearization, iterative learning control, PSO optimization, control design.
	1. Introduction
	2. Particle Swarm Optimization (PSO) algorithm description
	3. Control object model
	4. Control Design
	4.1 Feedback linearization
	4.2 State space representation
	4.3 PSO-ILC-PD controller

	5. Numerical simulation
	6. Conclusions
	Acknowledgment
	References

	109

	16 Interdisciplinary and Multidisciplinary Problems
	Interdisciplinary and Multidisciplinary Problems
	17
	18
	49
	54
	84
	102
	1 Introduction
	2 Methodology
	3 Results
	4 Discussion
	5 Conclusion
	6 Acknowledgment
	References

	111
	113
	114
	116
	3.2 Radial compression test (radial force)
	3.3 Three-point bending
	Acknowledgment



	17 5th Serbian-Greek Symposium on Advanced Mechanics
	5th Serbian-Greek Symposium on Advanced Mechanics
	9
	15
	21
	28
	36
	50
	67
	69
	75
	78
	80
	85
	87
	93
	105
	1.  Introduction
	1.1  Eshelbian approach to eigenstrains

	2.  Effective properties tensors
	2.1  Effective stiffness
	2.2  Symmetry groups in presence of ellipsoidal inclusions
	2.3  Elasticity  and damage tensors  caused by ellipsoidal inclusions

	3.  Evolution equations by endochronic thermodynamics
	3.1  Orthotropic QRI materials
	3.2  Classical J2 theory of orthotropic materials

	4. Concluding remarks
	Acknowledgements


	110
	122
	123

	18 Turbulence
	Turbulence
	27
	41
	46
	47
	65
	104
	107
	108
	112
	119

	19 Mathematical Biology and Biomechanics
	Mathematical Biology and Biomechanics
	4
	10
	16
	31
	68

	110 Nonlinear Dynamics
	Nonlinear Dynamics
	8
	11
	13
	14
	26
	Abstract
	1. Introduction
	2. Governing equations
	3. Conclusions
	4. Acknowledgement
	References

	61
	86
	92
	97

	Blank Page

	BackCover letter



