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Abstract:
In this paper, an adaptive iterative learning control algorithm for robotic manipulators is 

proposed. A simplified robot manipulator model with 3 degrees of freedom is used as control 
object for verification purposes. The mathematical model is obtained via Rodriguez approach for 
modeling differential equations of motion for multi-body systems. The model itself is a simple 
open-chain kinematic structure. The proposed control system design consists of two layers of 
controllers. In the inner loop, feedback linearization is applied to deal with the model 
nonlinearities. Post feedback linearization advanced iterative learning control (ILC) algorithm of 
sign-D (signum-Derivative) type is introduced as feed-forward compensation with classical PD 
(Proportional-Derivative) controller in feedback closed loop. A particle swarm optimization 
(PSO) algorithm is used to optimize ILC gain parameters while gains for PD controller are set by 
trial and error. Suitable cost function based on position error is chosen for PSO algorithm in order 
to ensure convergence. Numerical simulation is carried out in two cases – case with constant 
learning gains and case with PSO optimized learning gains. It is observed that the proposed 
control law converges to some steady-state error value in both cases. 

Key words: robot dynamics, feedback linearization, iterative learning control, PSO 
optimization, control design. 

1. Introduction

Iterative Learning Control (ILC) as a concept has been introduced by Uchiyama in [1] and
Arimoto in [2]. Since then, ILC has gained a lot of interest in the scientific community especially 
in applications to robotics and batch processes. Iterative learning control is a memory type of 
control algorithm based on previous knowledge about the system. ILC can be also defined as an 
intelligent control methodology. Iterative learning control seeks to improve the transient 
performance of the system that operates over a fixed period of time repetitively. The key idea of 
ILC is learning through a predetermined hardware repetition. That means that some postulates 
need to be established for ILC beforehand. This is analogous to the human learning process about 
its environment through experience. A person’s current actions in a certain environment are based 
on the experience of that same or similar environment from the past stored in memory and 
evaluation of current circumstances. ILC algorithm drives machine to ‘learn’ from stored data 
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similarly [3]. The basic ILC algorithm uses input and error information from the previous 
iteration and some corrective terms to construct current system input. 

Industrial or rehabilitative robotics, given their operations and tasks repetitive nature, are 
suitable for the implementation of ILC type of control schemes. In robotics, it is used for 
trajectory tracking performance improvement with or without some other type of control 
algorithm. Repetitive tasks in an industrial environment require repeating one operation over and 
over again during work hours so some sort of self-tuning control scheme is desirable [4]. The 
main advantage of iterative learning control is robustness towards uncertainty and disturbances. 
System dynamics of complex systems such as robot arms cannot be modelled without some 
degree of parameter uncertainty [5]. Various tasks also require disturbance rejection capabilities, 
like pick and place tasks where mass of picked object might vary. Robotic systems are non-linear 
systems and as such require as close as possible model dynamics knowledge in order to design 
control law for trajectory tracking. ILC comes as a promising solution for this problem because 
for error to converge to zero, the system’s exact model is not necessarily needed to be known. 
Although the convergence of the error towards zero or some other acceptable steady-state value is 
ensured through the iterative process, it is also possible to have a large trajectory error in initial 
iterations before convergence occurs. This is unacceptable for purposes/applications where high 
precision is needed [6]. This happens mostly due to ILC being open-loop control law without 
real-time feedback information. One possible/promising solution for the aforementioned problem 
is to design the ILC algorithm to work partially offline and partially online or to add feedback-
based controller besides the ILC one. 

In this paper, such possibility is investigated. A fully open-loop ILC controller is applied in 
parallel with the classic feedback controller as a second level of control. For the first level, 
feedback linearizing control law is applied to cancel out known nonlinearities, leaving system 
uncertainties. The main idea of ILC control law is to deal with these uncertainties. Controllers are 
nowadays almost exclusively digital so computing time should be considered. The ILC algorithm 
proposed here is inspired by algorithm proposed in [7] and the basic ILC algorithm is proposed in 
[2]. To make it more robust to uncertainties, Particle Swarm Optimization (PSO) algorithm is 
introduced to optimize learning gain for the next trial. The experimental results show that PSO 
algorithm is a computationally inexpensive algorithm suitable for real-time implementations in 
robotics. 

2. Particle Swarm Optimization (PSO) algorithm description

PSO (Particle Swarm Optimization) algorithm is a stochastic optimization method for
continuous nonlinear functions. It was discovered through simulation of bird social behavior. The 
algorithm itself is mathematically very simple and computationally inexpensive. Moreover, PSO 
is an iterative and population-based algorithm where the initial population is randomly chosen. 
Each particle’s position in the search space is calculated based on previous position and 
randomized velocity which drives search towards the optimum position. Previous particle 
positions are stored in memory and compared to current positions in order to determine the best 
position for each particle and the best position among the entire population. 

Since its discovery, the PSO algorithm received a multitude of changes, improvements and 
adaptations. Initial versions of PSO algorithm belong to the same basic concept. First is the 
GBEST model, or the original form of this algorithm, and the second is the LBEST model. 
GBEST model is based on evaluating each particle’s best position, comparing it to the previous 
best position, and finding the global best position. On the other hand, the LBEST model 
represents/is the local version of the GBEST model. In LBEST each particle has knowledge of its 
own best position and two nearest neighboring particles instead of the entire population. Particle 
neighborhood can be minimal consisting of only two adjacent particles or can be larger. In 
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contrast to the GBEST model, the LBEST model showed robustness to falling into local optima, 
although its convergence is slower comparing with the GBEST model. [8-9]. 

PSO algorithm can be mathematically described as follows. Let the population be the size of 
𝑁𝑁 particles. Each particle is associated with position vector 𝑋𝑋𝑛𝑛 = (𝑋𝑋𝑛𝑛,1,𝑋𝑋𝑛𝑛,2, … ,𝑋𝑋𝑛𝑛,𝐷𝐷), velocity 
vector 𝑉𝑉𝑛𝑛 = (𝑉𝑉𝑛𝑛,1,𝑉𝑉𝑛𝑛,2, … ,𝑉𝑉𝑛𝑛,𝐷𝐷), best position vector 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 = (𝑃𝑃𝑛𝑛,1,𝑃𝑃𝑛𝑛,2, … ,𝑃𝑃𝑛𝑛,𝐷𝐷) in 𝐷𝐷-
dimensional space. Also, there is a group of particles with best position vector 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =
(𝐺𝐺1,𝐺𝐺2, … ,𝐺𝐺𝐷𝐷). Best positions are evaluated through suitable fitness function minimization. 
Particles individual best position is updated via the following expression: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑘𝑘+1 = � 𝑋𝑋𝑛𝑛𝑘𝑘+1, if 𝑓𝑓(𝑋𝑋𝑛𝑛𝑘𝑘+1) < 𝑓𝑓(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑘𝑘)
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑘𝑘 , otherwise

         (1) 

Group’s optimal position is best position of all individual positions for the current iteration. 
Velocity and position vectors are calculated via the following equations: 

𝑉𝑉𝑛𝑛𝑘𝑘+1 = 𝑉𝑉𝑛𝑛𝑘𝑘 + 𝑐𝑐1 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑘𝑘 − 𝑋𝑋𝑛𝑛𝑘𝑘� + 𝑐𝑐2 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑛𝑛𝑘𝑘 − 𝑋𝑋𝑛𝑛𝑘𝑘�    (2) 

𝑋𝑋𝑛𝑛𝑘𝑘+1 = 𝑋𝑋𝑛𝑛𝑘𝑘 + 𝑉𝑉𝑛𝑛𝑘𝑘+1         (3) 

where 𝑘𝑘 is iteration index, 𝑛𝑛 is population index, 𝑐𝑐1 and 𝑐𝑐2 are acceleration constants and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is 
random uniform number in interval [0,1]. The PSO search mechanism based on the previous 
equations (2) and (3) can be depicted as it is shown in Fig. 1. The original formulation of the PSO 
showed some shortcomings particularly in terms of the algorithm's convergence characteristics. 
Therefore, various improved versions of the algorithm were proposed in the literature. Following 
modified version is used in this paper: 

𝑉𝑉𝑛𝑛𝑘𝑘+1 = 𝜔𝜔 ∗ 𝑉𝑉𝑛𝑛𝑘𝑘 + 𝑐𝑐1 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑘𝑘 − 𝑋𝑋𝑛𝑛𝑘𝑘� + 𝑐𝑐2 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑛𝑛𝑘𝑘 − 𝑋𝑋𝑛𝑛𝑘𝑘�         (4) 

where 𝜔𝜔 is is called inertia weight. Introducing this parameter, performance of the PSO 

Fig. 1. PSO algorithm search scheme 

algorithm in optimization problems is greatly improved, without increasing algorithms 
complexity. This modified version (4) is generally called the canonical PSO algorithm while (2) 
is called the original PSO algorithm [10]. 

3. Control object model

A robot manipulator with 3 degrees of freedom is used as a control object model. The
mathematical model is obtained via Rodrigues approach [11-12]. A robot manipulator with open-
chain kinematic structure is considered. 

The robot manipulator model is represented as a sequence of three rigid bodies – links, 
interconnected with joints. All three joints are kinematic pairs of the fifth class, which means that 
each joint allows movement only along one degree of freedom. All three joints are rotational. 
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Links are adopted as homogeneous truncated cones with lengths 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3 respectively. 
Generalized coordinates associated with each joint are adopted as 𝑞𝑞𝑖𝑖 , 𝑖𝑖 = 1,2,3. Inertial reference 
frame 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 origin is set on the axis of rotation of the first joint (see Fig. 2.). Each link has a local 
reference frame 𝐶𝐶𝜉𝜉𝑖𝑖𝜂𝜂𝑖𝑖𝜁𝜁𝑖𝑖 attached to it, with origin in the center of inertia. Reference configuration 
for robot manipulator is achieved when corresponding axes 𝜉𝜉𝑖𝑖𝜂𝜂𝑖𝑖𝜁𝜁𝑖𝑖 are parallel with inertial 
reference frame 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 axes at the initial time. Robot manipulator must be in reference 
configuration for Rodriguez approach to be applied. 

Fig. 2. Structure of the robot model 

Parameters 𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑖̅𝑖 = 1 − 𝜉𝜉𝑖𝑖 are defined, which denote whether the joint is prismatic or 
cylindrical. Rotational axes of the model are defined by the unit vectors 𝑒𝑒𝑖𝑖. The geometry of the 
links is defined by the position vectors 𝜌⃗𝜌𝑖𝑖 and 𝜌⃗𝜌𝑖𝑖𝑖𝑖 expressed in local coordinate frames 𝐶𝐶𝑖𝑖𝜉𝜉𝑖𝑖𝜂𝜂𝑖𝑖𝜁𝜁𝑖𝑖. 
Differential equations of motion for the robot manipulator can be now obtained by applying 
Lagrange equations of the second kind in the covariant form as follows: 

∑ 𝑎𝑎𝛾𝛾𝛾𝛾(𝑞𝑞)𝑞̈𝑞𝛼𝛼𝑛𝑛
𝛼𝛼=1 + ∑ ∑ Γ𝛼𝛼𝛼𝛼,𝛾𝛾(𝑞𝑞)𝑞̇𝑞𝛼𝛼𝑞̇𝑞𝛽𝛽𝑛𝑛

𝛽𝛽=1
𝑛𝑛
𝛼𝛼=1 = 𝑄𝑄𝛾𝛾 ,   𝛾𝛾 = 1,2, . .𝑛𝑛         (5) 

where the coefficients 𝑎𝑎𝛾𝛾𝛾𝛾 are the covariant coordinates of the basic metric tensor and 
Γ𝛼𝛼𝛼𝛼,𝛾𝛾(𝑞𝑞) are Christoffel symbols of the first kind. The coefficients 𝑎𝑎𝛼𝛼𝛼𝛼 of metric tensor are 
defined as: 

𝑎𝑎𝛼𝛼𝛼𝛼 = ∑ 𝑚𝑚𝑖𝑖�𝑇𝑇�⃗𝛼𝛼(𝑖𝑖)��𝑇𝑇�⃗𝛽𝛽(𝑖𝑖)� + �Ω��⃗ 𝛼𝛼(𝑖𝑖)�[𝐽𝐽𝐶𝐶𝐶𝐶]�Ω��⃗ 𝛽𝛽(𝑖𝑖)�𝑛𝑛
𝑖𝑖=1              (6) 

where translational 𝑇𝑇�⃗𝛼𝛼(𝑖𝑖) and rotational Ω��⃗ 𝛼𝛼(𝑖𝑖) quasi-base vectors are defined as: 

𝑇𝑇�⃗𝛼𝛼(𝑖𝑖) = �𝜉𝜉𝛼𝛼𝑒𝑒𝛼𝛼 × 𝑅𝑅�⃗ 𝛼𝛼(𝑖𝑖) + 𝜉𝜉𝛼𝛼𝑒𝑒𝛼𝛼 ,∀𝛼𝛼 ≤ 𝑖𝑖
0,∀𝛼𝛼 > 𝑖𝑖 

,Ω��⃗ 𝛼𝛼(𝑖𝑖) = �𝜉𝜉𝛼̅𝛼𝑒𝑒𝛼𝛼 , ∀𝛼𝛼 ≤ 𝑖𝑖
0, ∀𝛼𝛼 > 𝑖𝑖

        (7) 

as well as 𝑅𝑅�⃗ 𝛼𝛼(𝑖𝑖) = ∑ �𝜌⃗𝜌𝑘𝑘𝑘𝑘 + 𝜉𝜉𝑘𝑘𝑒𝑒𝑘𝑘𝑞𝑞𝑘𝑘� + 𝜌⃗𝜌𝑖𝑖𝑖𝑖
𝑘𝑘=𝛼𝛼 . Christoffel symbols are defined as: 

Γ𝛼𝛼𝛼𝛼,𝛾𝛾 = 1
2
�𝜕𝜕𝑎𝑎𝛽𝛽𝛽𝛽
𝜕𝜕𝑞𝑞𝛼𝛼

+ 𝜕𝜕𝑎𝑎𝛾𝛾𝛾𝛾
𝜕𝜕𝑞𝑞𝛽𝛽

−
𝜕𝜕𝑎𝑎𝛼𝛼𝛼𝛼
𝜕𝜕𝑞𝑞𝛾𝛾

� ,𝛼𝛼,𝛽𝛽, 𝛾𝛾 = 1, … ,𝑛𝑛         (8) 

Generalized forces in our case can be written as: 

𝑄𝑄𝛾𝛾 = 𝑄𝑄𝛾𝛾𝑎𝑎 + 𝑄𝑄𝛾𝛾
𝑔𝑔 (9)
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where 𝑄𝑄𝛾𝛾𝑎𝑎 ,𝑄𝑄𝛾𝛾
𝑔𝑔 are generalized control and gravitational forces, respectively. 

Differential equations of motion of robot manipulator now can be presented in compact matrix 
form: 

𝑎𝑎(𝑞𝑞)𝑞̈𝑞 + (𝐾𝐾(𝑞𝑞, 𝑞̇𝑞) − 𝑄𝑄𝑔𝑔) = 𝑎𝑎(𝑞𝑞)𝑞̈𝑞 + 𝑐𝑐(𝑞𝑞, 𝑞̇𝑞) = 𝑄𝑄𝑢𝑢       (10) 

where 𝑎𝑎(𝑞𝑞) is the inertia matrix, 𝐾𝐾(𝑞𝑞, 𝑞̇𝑞) is matrix that includes centrifugal and Coriolis 
effects, 𝑄𝑄𝑔𝑔 is vector of gravitational forces and 𝑄𝑄𝑢𝑢 is vector of generalized control force. 

4. Control Design

The robotic multi-body system is MIMO (Multi-Input Multi-Output) system and it is an
inherently nonlinear time-varying system. To cope with nonlinearities, proposed control law is 
designed in two layers – feedback linearizing loop and PSO enhanced ILC algorithm with a 
classical PD feedback loop. 

4.1 Feedback linearization 

Feedback linearization is a model-based control algorithm applied to partially or completely 
mitigate nonlinearities. Feedback linearization in general is exact linearization [13]. Here, a real 
robotic manipulator model can be treated as a two-part model, with a nominal part and an 
uncertain part. Feedback linearizing control law is applied to cancel the nominal part of the 
model, and leave an uncertain part for the next stage PSO-ILC-PD controller to deal with it. The 
uncertain part is added to simulate real-world uncertainty, which arises due to the idealization and 
simplification of the model and simply because some of the parameters are unknown. Uncertainty 
of the given model can be represented, at the simplest, as an additive uncertainty [14]. Changing 
parameter is the mass of the object. With that in mind, inertia matrix, centrifugal matrix, and 
gravity vector can be written as a sum of nominal and uncertain part [15]. Given the equations of 
motion, 

(𝑎𝑎𝑁𝑁(𝑞𝑞) + Δ𝑎𝑎)𝑞̈𝑞 + (𝐾𝐾𝑁𝑁(𝑞𝑞, 𝑞̇𝑞) + Δ𝐾𝐾) − (𝑄𝑄𝑁𝑁
𝑔𝑔 + Δ𝑄𝑄𝑔𝑔) = 𝑄𝑄𝑢𝑢       (11) 

input vector 𝑄𝑄𝑢𝑢 can be calculated as: 

𝑄𝑄𝑢𝑢 = 𝑎𝑎𝑁𝑁(𝑞𝑞)𝑢𝑢 + 𝐾𝐾𝑁𝑁(𝑞𝑞, 𝑞̇𝑞) −  𝑄𝑄𝑁𝑁
𝑔𝑔       (12) 

Inserting equation (12) in equation (11), new linear decoupled system is obtained: 

𝑞̈𝑞(𝑡𝑡) = 𝑎𝑎−1(𝑞𝑞)𝑎𝑎𝑁𝑁(𝑞𝑞)𝑢𝑢(𝑡𝑡) + 𝜂𝜂(𝑞𝑞, 𝑞̇𝑞)        (13) 

where 𝜂𝜂(𝑞𝑞, 𝑞̇𝑞) = −𝑎𝑎−1(𝑞𝑞)(Δ𝐾𝐾(𝑞𝑞, 𝑞̇𝑞) − Δ𝑄𝑄𝑔𝑔) . Now 𝑢𝑢 can be chosen as new control law, in 
our case ILC/PD type.  

Block diagram of first layer of control system is shown in next figure (Fig. 3.) 

Fig. 3. Block diagram of feedback linearization control law 
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4.2 State space representation 

After applied feedback linearization, equations of motion now can be represented in the state-
space form: 

𝑥̇𝑥(𝑡𝑡) = 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐵𝐵𝐵𝐵(𝑡𝑡) + 𝐷𝐷𝐷𝐷(𝑞𝑞, 𝑞̇𝑞),       (14) 

𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝐶𝐶(𝑡𝑡).       (15) 

where 

𝐴𝐴 = �0𝑛𝑛×𝑛𝑛 𝐼𝐼𝑛𝑛×𝑛𝑛
0𝑛𝑛×𝑛𝑛 0𝑛𝑛×𝑛𝑛

� ,𝐵𝐵𝑎𝑎 = �
0𝑛𝑛×𝑛𝑛
𝑎𝑎−1𝑎𝑎𝑁𝑁

� ,𝐷𝐷 = �0𝑛𝑛×𝑛𝑛
𝐼𝐼𝑛𝑛×𝑛𝑛

�       (16) 

𝐶𝐶 = [𝐼𝐼𝑛𝑛×𝑛𝑛 0𝑛𝑛×𝑛𝑛].       (17) 

Before applying proposed ILC algorithm as input u, the following assumptions will be made: 

I. Desired trajectories 𝑞𝑞𝑑𝑑(𝑡𝑡) are continuously differentiable on [0,𝑇𝑇],

II. Initial conditions for all iterations are 𝑥𝑥𝑘𝑘(0) = 𝑥𝑥𝑑𝑑(0), 𝑘𝑘 = 1,2, … ,𝑛𝑛 

III. Influence of changing the masses of links is negligible on matrix 𝑎𝑎(𝑞𝑞), so it follows

that 𝑎𝑎−1𝑎𝑎𝑁𝑁 ≈ 𝐼𝐼, and 𝐵𝐵𝑎𝑎 = 𝐵𝐵 = �0𝑛𝑛×𝑛𝑛
𝐼𝐼𝑛𝑛×𝑛𝑛

�,

IV. System (14) and (15) is causal [15].

4.3 PSO-ILC-PD controller 

The proposed linear control law should ensure trajectory tracking and robustness to 
uncertainties. After closing the linearizing loop, an open-closed loop ILC algorithm is introduced 
which consists of feed-forward sign-D type control law and feedback PD type control law as 
represented in the block diagram (Fig. 4.). In [7] sign-P type ILC control law with self-adapting 
steps is exploited for linear time-invariant (LTI) systems control suitable for implementation on 
microcontrollers due to absence of derivative calculation. It is observed in [7] and [16] that error 
convergence is ensured but learning gain matrix 𝑀𝑀 is tiresome and time-consuming to tune by 
hand and error convergence in presence of uncertainties is achieved after 100 or more iterations. 
ILC algorithm is enhanced with PSO algorithm after every iteration making self-adaptation 
proposed in [7], optimal and somewhat continuous instead of the limited number of fixed gain 
parameters 𝑀𝑀. PSO algorithm optimizes learning gain matrix 𝑀𝑀 thus ensuring error convergence 
along iteration axis and controller robustness. This also removes a large portion of time spent 
tuning 𝑀𝑀 by trial and error. The simplicity of the PSO algorithm makes it a good choice for 
implementation on a digital Programmable Logic Controllers (PLC) in comparison to other 
optimization methods. Classical PD feedback stabilizes systems response along the time axis. 

For the PSO algorithm to function properly, a suitable cost function should be chosen. Good 
cost function will drive the search process towards a global minimum. Cost function for norm 
optimal ILC (NOILC) is chosen [17]: 

𝐽𝐽𝑘𝑘+1(𝑢𝑢𝑘𝑘+1) = �𝑢𝑢𝑘𝑘+1 − 𝑢𝑢𝑘𝑘�2 + �𝑒𝑒𝑘𝑘+1�2       (18) 

This cost function penalizes input difference between iterations and ensures that position 
error is always small. 

Control law can be partitioned to feed-forward 𝑢𝑢𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 (𝑡𝑡) consisting of ILC controller and 
feedback 𝑢𝑢𝑃𝑃𝑃𝑃𝑖𝑖 (𝑡𝑡) part consisting of classical PD type control law. Now, the second layer of our 
system controller can be written as: 
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𝑢𝑢𝑘𝑘+1(𝑡𝑡) = 𝑢𝑢𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘 (𝑡𝑡) + 𝑢𝑢𝑃𝑃𝑃𝑃𝑘𝑘 (𝑡𝑡) = 𝑢𝑢𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘−1 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�𝑒̇𝑒𝑘𝑘−1� + 𝐾𝐾𝑃𝑃𝑒𝑒𝑘𝑘 + 𝐾𝐾𝐷𝐷𝑒̇𝑒𝑘𝑘   (19) 

where 𝑘𝑘 denotes ILC iteration index (not PSO iteration index), 𝑒𝑒𝑘𝑘 = 𝑦𝑦𝑑𝑑 − 𝑦𝑦𝑘𝑘 , 𝑒̇𝑒𝑘𝑘 = 𝑦̇𝑦𝑑𝑑 − 𝑦̇𝑦𝑘𝑘 are 
position and velocity errors respectively, 𝑀𝑀, 𝐾𝐾𝐾𝐾, and 𝐾𝐾𝐾𝐾 are positive-definite diagonal gain 
matrices. Signum function is defined as: 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) = �
−1, 𝑥𝑥 < 0
0, 𝑥𝑥 = 0
1, 𝑥𝑥 > 0

      (20) 

Fig. 4. Block diagram of the system 
5. Numerical simulation

Proposed control law verification is carried out through numerical simulation in Matlab using
ode45(.) function for solving ordinary differential equations. The robot manipulator is tasked with 
desired trajectory tracking, 𝑞𝑞𝑑𝑑(𝑡𝑡) ∈ ℝ𝑛𝑛, and the maximum absolute error for each joint is set as 
|𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏| = 0.008 [𝑟𝑟𝑟𝑟𝑟𝑟]. Actual joint trajectories are observed over time interval 𝑡𝑡 = [0,𝑇𝑇] where 
𝑇𝑇 = 5𝑠𝑠. Desired trajectories are given as fifth-order polynomials in joint space coordinates: 

𝑞𝑞𝑑𝑑(𝑡𝑡) = 𝑎𝑎0 + 𝑎𝑎1𝑡𝑡 + 𝑎𝑎2𝑡𝑡2 + 𝑎𝑎3𝑡𝑡3 + 𝑎𝑎4𝑡𝑡4 + 𝑎𝑎5𝑡𝑡5       (21) 

with constraints showed in Table 1: 

k 1 2 3 
qdk(0)[rad] 0 0 0 
qdk(T)[rad] 1.5708 0.7854 0.5236 

q̇dk(0)[rad/s] 0 0 0 
q̇dk(T)[rad/s] 0 0 0 

q̈dk(0)[rad/s2] 0 0 0 
q̈dk(T)[rad/s2] 0 0 0 

Table 1. Constraints for desired trajectories, velocities and accelerations of joints 

Uncertainty parameter in our case is robot link mass change Δ𝑚𝑚𝑖𝑖 = 0.15𝑚𝑚𝑖𝑖 , 𝑖𝑖 = 1,2,3. 
Matrices 𝐾𝐾𝐾𝐾 and 𝐾𝐾𝐾𝐾 are set to be 𝐾𝐾𝐾𝐾 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(10) and 𝐾𝐾𝐾𝐾 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(6.3). PSO algorithm task is to 
optimize learning gain diagonal matrix M, so as a variable it is adopted 3-dimensional vector 
which is a vector of diagonal elements of the same matrix. That means PSO algorithm will search 
in 3-dimensional space. Parameters of the PSO algorithm are set as follows: 

Unknown variable Xn Learning gain matrix M diagonal 
Variable Xn limits 𝑋𝑋1 ∈ [0,1],𝑋𝑋2 ∈ [0,0.5],𝑋𝑋3 ∈ [0,0.3] 

Maximum number of iterations 20 
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Population size 30 
Inertia weight 0.9 

Personal acceleration coefficient 1.9 
Social acceleration coefficient 2 

Table 2. PSO algorithm parameters 

Guidelines for PSO parameters choice can be found in [18]. In our case, variable limits play 
important role in error convergence. It is observed that better results are achieved when learning 
gain diagonal matrix M elements are in intervals from zero to one. The more interval limits grow 
the more error is getting bigger. 

Results of simulation show that the proposed PSO-ILC-PD control law drives error value 
below proposed boundary value |𝑒𝑒𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜| = 0.008 [𝑟𝑟𝑟𝑟𝑟𝑟]. Convergence occurs around the 15th 
iteration for all three joints (Fig. 5.). In Fig. 6. it can be seen that actual trajectories after 50th 
iteration achieves good tracking of the reference trajectories. Position errors are depicted in Fig. 
7.  

Fig. 5. Maximum position error evolution over iterations 

Fig. 6. Desired vs. actual trajectories after 50th iteration 
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Fig. 7. Position errors over time after 50th iteration 

A comparison between PSO-ILC-PD and ILC-PD without PSO is presented. System is tested 
with constant learning gain matrix 𝑀𝑀 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(0.05, 0.095, 0.06), for each iteration. Results show 
that error convergence in this case occurs slower than in the case with PSO (see Fig. 8). Due to 
the system being coupled, it is difficult to tune matrix M to get faster error convergence. 

Fig. 8. Maximum position error evolution over iterations without PSO 

6. Conclusions

In this paper PSO-ILC-PD type of controller is investigated. Control law behavior is tested,
through simulation, on a robotic system with additive bounded uncertainties. The system with 
PSO optimized learning gain shows faster error convergence than the system without PSO. Both 
systems converge below proposed error boundary |𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏| = 0.008 [𝑟𝑟𝑟𝑟𝑟𝑟]. Proposed ILC control 
law in combination with Particle Swarm Optimization is suitable to be implemented on 
Programmable Logic Controllers (PLC) due to their computational simplicity. 
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