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Abstract: 

In this paper, an advanced iterative learning control algorithm (ILC) is introduced in order to 
solve the output tracking problem of a robotic manipulator with three degrees of freedom. 
Iterative fractional order PDµ  type control is located in feedforward path, and combined together 
with classical feedback PD controller. Fractional derivative µ  provides additional flexibility in 
adjusting the output performances. Parameters of the feedback controller are derived using a 
modern approach which takes into consideration both performance and robustness characteristics 
of the closed loop system. This is achieved by a suitable selection of only one adjustable 
parameter. Mathematical model of robotic manipulator is derived together with actuator 
dynamics, and it is shown that in the presence of high gear ratio the nonlinear effects can be 
neglected, and only linear model can be observed. The efficiency of the proposed control 
algorithm is demonstrated by simulations, in which robotic arm needs to follow desired trajectory 
given in joint space. Excellent tracking performances are achieved only after few iterations.  
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1. Introduction

Robotics, as a relatively young and multidisciplinary field of modern technology, requires
knowledge of electrical, mechanical and systems engineering. Rapid development of robotics 
over the past decades is mostly caused by advances in computer and sensor technology, as well as 
theoretical advances in control theory [1]. Majority of robot applications deal within industrial 
conditions, accomplishing tasks such as welding, packaging, cutting, paint spraying, moving 
objects etc. So, industrial manipulators need to fulfill high demands in terms of accuracy, 
precision and repeatability. 
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Designing such a controller is a complex task. Scientific community reports a large number of 
different control strategies for robotic manipulators [2]. Most of them are based on linear control 
theory from a practical reason. Namely, linear controllers are intuitive, easy to understand and last 
but not least, easy to implement. This approach gains even more importance when robot 
dynamics can be regarded as linear, which can be achieved by using motors with high gear ratios, 
or by using feedback linearization techniques. This way, dynamic coupling effects can be 
neglected and control of each robotic joint can be designed independently. This is the reason why 
classical PID controllers are still an inevitable part of industrial control of robot manipulators 
[3,4].  

Besides classical control strategies, improving system performances can be achieved by 
applying intelligent control techniques [5]. One of these is iterative learning control (ILC), which 
has recently attracted scientists’ attention as perspective field in robotic control [6]. Namely, ILC 
tries to emulate human learning using the trial-error concept i.e., knowledge from the previous 
trial is used to adjust control variable for the current trial. That way it can iteratively improve 
systems response over a finite time interval [7]. However, ILC as a simple offline feedforward 
technique cannot effectively suppress unknown disturbances. To accomplish that, ILC is 
combined with classical feedback control or, as in our case, with proportional-derivative (PD) 
control.  

On the other side, fractional calculus, as a theory of integrals and derivatives of non-integer 
order [8], can be used to additionally improve control system performances. It is intuitively clear 
that non-integer controllers are more flexible comparing to integer order counterparts. Basically, 
fractional order (FO) controllers with few tuning parameters can achieve same robustness and 
performance characteristics as the classical high order controller. In the literature, some of the 
most common FO controllers are CRONE controller [9], PI Dλ µ  controller [10], and fractional 
lead/lag compensator [11]. 

In this paper, a combination of advanced ILC with classical feedback control scheme is used 
for the control of a 3 degrees of freedom (3DOFs) robot manipulator. More specifically, 
feedforward PDµ  type of ILC is used together with classical PD feedback control in order to 
obtain better output performances just after few iterations. Nonlinear mathematical model of 
robotic manipulator is presented in Section 2, which, because of a high gear ratio, is reduced to a 
linear model. Section 3 deals with the design of the aforementioned controller. Section 4 presents 
some simulation results, and section 5 concludes the paper.  

2. Mathematical model of robotic manipulator with actuator dynamics

In this paper we consider a NeuroArm robotic system with seven DOFs, which is an integral
part of the Laboratory of Applied Mechanics at the Faculty of Mechanical Engineering in 
Belgrade (Figure 1). The first three revolute joints are responsible for setting the end-effector into 
the demanded position, while the following three joints form the spherical wrist and achieve the 
end-effector’s orientation. The 7th DOF is the gripper. In this paper, we consider only a 3-DOF 
NeuroArm with the first three revolute joints.  

The mechanical structure of a NeuroArm robot could be considered as a sequence of rigid 
bodies (or links) interconnected by means of joints. Dynamic equations of the robotic system can 
be written in the following form: 

( ) ( ), ,A C+ − =   g mq q q q q Q Q  (1) 
wherein: ( ) 3t R∈q  is the vector of the generalized coordinates, ( ) 3 3A R ×∈q  represents basic 
metric tensor (or inertia matrix), ( ) 3 3,C R ×∈q q  is a matrix that includes centrifugal and Coriolis 
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effects, 3R∈gQ  and 3R∈mQ  are gravity term and torque vectors applied to the joints, 
respectively. For details of the calculation of the basic metric tensor and matrix ( ),C q q  for robot 
manipulators, the reader is referred to [12].  

Fig. 1. NeuroArm robotic manipulator with 7DOFs 

Usually, motor’s optimal working condition include high angular speeds and low torques. On 
the other side, controlling the movement of robot link demands low speeds and high torques. 
Hence, it is necessary to interpose a gear transmission between motors and joints. Considering 
rigid robots, the following equations describe the transmission of the gears 

,   ,m lN N= =mq q Q τ  (2) 
wherein mq  represents the positions of the actuators shafts, N  is the 3 3×  diagonal matrix of the 
gear ratios, and lτ  is the vector of torques resulting from the robot manipulator and acting on the 
motors shafts. It can be easily shown [13] that torque lτ  is equal to: 

( ) ( ) ( )( )12 1,l m mN A C N
− −= + −  τ gq q q q q Q  (3) 

Torque lτ  can be regarded as a disturbance acting on the motor shaft. As we can see from (3), 
the influence of this disturbance on motor’s dynamics decreases with the increase of the reduction 
ratio N . This basically means that the presence of a large reduction ratio tends to linearize the 
dynamic equations of robot. In other words, we can neglect the nonlinear couplings between the 
motors of the various links, and use linear model instead.  

Model of a DC motor consists of a mechanical and electrical part, which can be described 
with following equations: 

,m m m m m lJ B+ = − q q τ τ  (4) 

,m
m e

ddR L K
dt dt

+ + =
qii u  (5) 

wherein mJ  is the 3 3×  diagonal matrix containing the effective motors inertias, mB  is the 3 3×  
diagonal matrix containing the viscous friction coefficients of the motors, mτ  is the vector of 
torques supplied by the actuators, mR  is the 3 3×  diagonal matrix containing the resistances of the 
armature circuits, 3R∈i  represents the vector of the armature currents, L  is the diagonal matrix 
of the armature inductances, eK  is the diagonal matrix containing the back EMF constants, and 
finally, u  is the vector of the armature input voltages. Relationship between torque vector mτ
and armature current vector i  is given as: 

,m mK= iτ (6)
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where mK  is the 3 3×  diagonal matrix containing the motor torque constants. Now, the complete 
block diagram of motor dynamics is depicted in Figure 2. 

Fig. 2. Block diagram of the DC motor 

Observing the above diagram, we can express the relationship between the control input u  
and the motor shaft output mq  using the following transfer function: 

( ) ( )( )
1.m

p
m m m e

kG s
s r j s b k k s

=
+ + +

(7) 

NeuroArm robot uses the Maxon RE36 (70Watt) DC motors for controlling the position of 
the first three links. Extracting the following parameters from the manufacturer’s data sheets: 

265.2 gcm ,mj =  1.71 ,r = Ω  0.89 mH,= 44.5 mNm ,mk A=  1  V rpm,215ek = the transfer 

function ( )pG s  becomes: 

( ) ( )m .
1

KG s
s Ts

=
+

(8) 

wherein =22.515K  and T=0.0056409.  The second order transfer function (7) is reduced to a first 
order model given by (8) because one of the three poles of ( )pG s  is located far left in the s-
plane, and its influence can be neglected. Finally, to sum up, the original nonlinear robotic 
system, due to high reduction ratio { }( )diag 185,230,74N = , resulted into 3 linear, decoupled

subsystems, described with motor transfer function ( )mG s . 

3. Controller design

The advanced control system scheme of NeuroArm robot is shown in Figure 3. As stated
before, control signal is divided into two parts, with feedforward and feedback paths. Here, ILC is 
proposed only in feedforward manner through the fractional PDµ  control law, while feedback 
path consists of classical PD control algorithm.  

The overall control input can be obtained as: 
( ) ( ) ( )1 1 1 .i ffi fbiu t u t u t+ + += +                                                                      (9) 

where ( )1ffiu t+  and ( )1fbiu t+  are two aforementioned parts of control signal in the 1i + − th 
iteration. More specifically, we can write the following: 

( ) ( ) ( )( )1 1 1 2( ) ( )ffi i i iu t u t Pe t P e tµ
+ = + Γ + (10) 

( ) ( )1 1 1( )fbi d i p iu t K e t K e t+ + += + (11)
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where ( )dq t  is the desired output trajectory, ( ) ,( ) ( )i d m ie t q t q t= −  and ( ) ( )1 1( )i d m,i+e t q t - q t+ =  are 
trajectory tracking error in the i − th iteration, and 1i + − th iteration, respectively. Also, 

3 3
1 2 1,  ,  ,  ,  d pP P K K R ×Γ ∈  are feedforward and feedback loop positive-definite diagonal matrices. 

The term ( ) ( )ie tµ  in (9) represents error derivative of µ -th order. A sufficient convergent
condition of a proposed feedforward-feedback control law can be found in [14]. 

Fig. 3. Block diagram of the advanced feedforward-feedback PD PDµ  control system 

Learning gain matrices 1 2,  P P  and 1Γ  are chosen by trial and error, while few words must be 
said now regarding the tuning of dK  and pK  matrices. Feedback control law for each one of the 
three motors that put in motion robotic arm, can be expressed by the following transfer function: 

( )
1

d p

f

k s k
C s

T s
+

=
+

, (12) 

where fT  is the filter time constant, dk  and pk  are derivative and proportional gain, respectively. 
Tuning method derived below is explained thoroughly in [15], and reader is referred to it for 
detailed explanations.  In this paper, parameters of the PD feedback controller are derived 
specifically for the plant ( )mG s  given by (8), since the nonlinear robot dynamics is equivalent to 
that linear model. To begin with, we start with the complementary transfer function ( )T s  given 
by [16]: 

( )
( )

1 0
31

sT s
s

η η
λ

+
=

+
 (13) 

where time constant λ > 0,  1η  and 0η  are free parameters which will be determined to obtain the 
desired dynamic characteristics of the closed loop system. Having in mind that ( )T s  can be 

formulated also as a ( ) ( ) ( ) ( ) ( )( )1m mT s C s G s C s G s= + , then, after some calculations, one 

obtains controller ( )C s  in the following form: 
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( )
( ) ( )

1 0
3

1 0

1 ,
1 m

sC s
G ss s

η + η
=

λ + −η −η
(14) 

Free parameters 1η  and 0η  are determined in order to cancel the poles of ( )mG s , and these 
values are given as: 

( )2
0 1 21,  3 3T T

T
λ  η = η = − λ − λ  . (15) 

Finally, parameters of the PD controller ( )C s  are defined by 

( )
( )

( )

22

2

3 3
,   ,   .

3 3 3p d f

T TT Tk k T
T K T K T

− − λ λ λ
= = =

− λ λ − λ λ − λ
 (16) 

Tuning formulae (16) contain one free parameter: time constant λ . By observing the above 
relations, we can conclude that system response is faster as λ  gets smaller. So, by adjusting λ  
one can obtain very good robustness/performance trade-off, which is a key issue in modern 
control system design. 

4. Simulation results

Now, simulation results are presented to illustrate the validity of the proposed advanced ILC
algorithm – PD PDµ  type. The desired output trajectories of the NeuroArm robotic links are as 
follows: 

( ) [ ] ( ) [ ]
( )[ ] [ ]

2
1 2

3

0 2 6 0 25

0 2 2 0 6
d d

d

q . t t rad , q . cos t rad ,

q . sin t rad , t , sec .

= ⋅ − = ⋅

= ⋅ ∀ ∈ (17) 

Fig. 4. The tracking performance of the first robot link through the 1st, 2nd and 4th iteration, and ( )1dq t .

The following values of learning gain matrices are adopted: 
( ) ( ) ( )1 2 11,1,1 , 1,1,1 , 0.1,  0.01,  0.1 .P diag P diag diag= = Γ = (18)
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Parameters of the feedback controller are determined according to (16) in order to obtain the 
best trade-off between robustness and performances of closed loop system: 

( ) ( )1,3165;  1,31651;  1,3165 , 0.2255;  0.2255;  0.2255p dK diag K diag= =  (19)
Filter constant is calculated as 0.2714.fT =  For all the selected parameters shown above and 

for 1.1,µ =  simulation results are shown in Figures 4-6. Figures show that the control system 
successfully tracks output trajectories just after few iterations.  

Fig. 5. The tracking performance of the second robot link through the 1st, 2nd and 4th iteration, and ( )2dq t .

Fig. 6. The tracking performance of the third robot link through the 1st, 2nd and 4th iteration, and ( )3dq t .
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Now, in order to show the influence of fractional derivative µ  on tracking error, we run the 
following simulation. We changed gradually the value of parameter µ  from 0.8 to 1.2, and 
observed how it effects on system’s response. Results are shown in Figures 7-9, in terms 
of maximum absolute tracking error for each of three robot links. It can be seen that 
tracking errors decrease as number of iterations increase. Also, the best results in terms of 
the speed of convergence of output signal are obtained for the value 1,1µ =  for the first 
and third robot link, and 1,2µ =  for the second joint.  

Fig. 7. Convergence of the maximum absolute tracking error through the iterations for the first robot link 

Fig. 8. Convergence of the maximum absolute tracking error through the iterations for the second robot link 
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Fig. 9. Convergence of the maximum absolute tracking error through the iterations for the third robot link 

5. Conclusions

This paper deals with the tracking output task of a 3-DOFs robot manipulator. First, a
mathematical model of robotic system is introduced. Due to high gear transmission ratio the 
model is reduced to the linear dynamics of actuators. Then, an advanced PDµ  type iterative 
learning control is established in the feedforward path, while classical PD controller is applied to 
the feedback loop. Simulation results verify the efficiency of the proposed advanced ILC 
algorithm. Convergence rate is analyzed for different values of fractional order parameter µ  and 
for different desired trajectories of robot links. 
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