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Abstract: 
  
In this contribution, the problem of finite-time stability for a class of neutral fractional-order time-
varying delay systems with nonlinear parameter uncertainties and perturbations is investigated. 
By use of the extended form of generalized Gronwall inequality, a new sufficient condition for 
robust finite-time stability of such systems is obtained. Finally, a numerical example is provided 
to illustrate the effectiveness and applicability of the proposed theoretical results. 
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1. Introduction  
 

Time-delay often appears in many real-world engineering systems either in the state, the 
control input, or the measurements, [1]. Stability and control design of time-delay systems are 
widely studied due to the effect of delay phenomena on system dynamics [2]. In this contribution, 
we consider system stability in the non-Lyapunov sense- finite-time stability (FTS) because the 
boundedness properties of system responses are very important from the engineering point of 
view. In the past decades, there has been a growing research interest in the field of finite-time 
stability and stabilization of time-delay systems which often leads to poor performance or even 
instability. Finite-time stability was first introduced in the Russian scientific community [3].  
Also,due to fact that in practice, the stability of time delay systems may be destroyed by its 
uncertainties and nonlinear perturbations [4,5],  it is necessary to study the FTS  analysis of time 
delay systems with uncertain parameters and nonlinear perturbations. 
       On the other side, neutral time-delay system is common in many practical engineering 
application where neutral delay is the leading example of many types of time delay, which not 
only exists in the system state but also has to do with the derivative of the system state. Also, over 
the last decade, fractional-order dynamical systems with derivative presented by fractional (non-
integer) differential equations have drawn much attention from researchers and engineers since 
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fractional calculus provide an excellent tool for the description of memory and hereditary 
properties of various materials and processes, [6].  
      Recently, some authors studied a class of the fractional-delay systems (FDS) retarded type 
and neutral type, [7,8,9]. An example of FDS of neutral type is a viscoelastic material which is 
used as damping in vibration systems. The Scot-Blair model assumes that the damping is 
proportional to a fractional order derivative of the displacement variable with the order of 
derivative ranging from 0 to 1 can be presented as neutral fractional-delay systems,[10]:  

( ) ( ) ( ) ( ) , 1 / 2c cD t A D t Bx t u t+ − = + =α α τ αx x ,                                    (1.1) 

Besides, a lot of existing models can be remodify as a neutral fractional differential equations or 
neutral fractional Volterra integro-differential equations i.e  the governing equation of many 
electromechanical and control systems with fractional terms results in more general form as 
multi-order fractional delay differential equations (FDDEs) given as  

                           ( ) ( ) ( )( ), , , 0 1.c cD t f t x t D t= − < ≤ <α β τ β αx x                                        (1.2)  

In recent years, there have been some advances in control theory of fractional-order dynamical 
systems [11], particularly for different kinds of stability. Here, we are interested in FTS where 
FTS analysis of fractional delay systems is initially investigated and presented in [7,12] using 
generalized Gronwall inequality. 
       In literature, there are few results concerning FTS of neutral fractional order time delay 
systems, see [13,14,15]. Recently, we obtained and presented new criterion  which is related to 
FTS of uncertain neutral nonhomogeneous fractional-order systems FDS with time-varying 
delays [16].  
       In this paper, based on the above motivations and discussions, at first time we shall address 
the finite-time stability problem of neutral fractional order time-varying delay systems with 
nonlinear parameter uncertainties and external disturbances. 

 
 

2. Preliminaries 
 
In this section, we consider the main definitions and properties of fractional derivative operators. 
The following definitions and lemmas are known and help proves our main stability criterion. 
 
Definition 1. The gamma function ( )Γ ⋅  known as the Euler’s gamma function is defined as 

       ( ) ( ) ( )1

0
e d , 1 , .tt t C

∞
− −Γ = Γ + = Γ ∈∫ αα α α α α                                             (2.1) 

where C  be the set of complex numbers. 

Definition 2: Let ( )f t  be a continuous function on [ ], .a b  The Riemann–Liouville fractional 
integral of order α  is [17,18]: 

( ) ( ) ( ) ( ) ( ) [ ] ( )1RL RL 1D I d , , , , Re 0.
t

a t a t
a

f t f t t s f s s t a b C−− ≡ = − ∈ ∈ >
Γ ∫ αα α α α
α

 (2.2) 

where ( )Re α denotes real part of α .  
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The Caputo fractional derivative is defined for a function ( ) [ ]: ,f a b C⋅ →  which belongs to the 
space of absolutely continuous functions: 
( ) [ ] ( ) ( ) [ ]{ }1 1, : d / d , ,n n nf t AC a b f t f t t AC a b− −∈ = ∈   .n N∈  

Definition 3: The Caputo fractional derivative of order ,α  ,C∈α  ( )Re 0,α ≥  for any function 

( ) [ ],nf t AC a b∈ is defined as  [17,18]:  

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1
0

C

0

1 d , , Re 1, .
D

d
, .

d

t
n n

a
a t

n
n

n

t s f s s N n n N
n

f t
f t

f t n N
t

− −
 − ∉ =   + ∈ Γ −

= 


= = ∈


∫ α

α
α α

α

α

 (2.3) 

Lemma 1. [19] Assume ( ) [ )( ) ( )1 0, , , 0x t C R x t∈ +∞ ≥  and 0α > . Then, ( )
( )

1

0

( )
t

t s
x s ds

α−−
Γ α∫  is 

monotonically increasing with respect to t. 
 
Lemma 2. [20] Assume that 0 1< < <β α ,then.  

( )( ) ( ) ( )
( )0

0
, 0

1
c

t t
x t

I D x t I x t t
−

− ⋅
= − ≥

Γ − +

α β
β α βα

α β
                                             (2.4) 

Lemma 3. [21] (Generalized Gronwall Inequality) Suppose ( ), ( )x t a t  are nonnegative and local 
integrable on 0 ,t T T≤ < ≤ +∞  and ( )g t  is a nonnegative, nondecreasing continuous function 
defined on 0 , ( )t T g t M const≤ < ≤ = , 0α >  with 

( ) 1

0

( ) ( ) ( ) ( )
t

x t a t g t t s x s dsα−≤ + −∫                                          (2.5) 

on this interval. Then                                                    

( )( )
( ) ( ) 1

10

( )
( ) ( ) ( ) , 0

nt
n

n

g t
x t a t t s a s ds t T

n

∞
α−

=

 Γ α
 ≤ + − ≤ <

Γ α 
 
∑∫                     (2.6) 

Corollary 1 [22]: Under the hypothesis of  Lemma1,  let ( )a t  be a nondecreasing  function on 
[ )0,T . Then it holds: 

( ) ( )( )( ) ( )x t a t E g t tαα≤ Γ α
                                                     (2.7) 

where Eα is the Mittag-Leffler function defined by ( ) ( )
0

/ 1k
k

E z z kα α
∞

=
= Γ +∑ . 

Lemma 4. [19] Suppose fractional orders 0, 0,α β> > ( )a t  is a nonnegative function locally 
integrable on [ )0,T , ( )1g t and ( )2g t are nonnegative, nondecreasing, continuous functions 
defined on [ )0,T ; ( ) ( )1 1 2 2 1 2, , ( , )g t N g t N N N const≤ ≤ = . Suppose ( )x t  is  nonnegative and 
locally integrable on [ )0,T  with  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ )1 1
1 2

0 0
, 0,

t t
x t a t g t t s x s ds g t t s x s t Tα β− −≤ + − + − ∈∫ ∫               (2.8) 
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Then,  

( ) ( ) ( )
( ) ( )
( )( ) ( )( ) ( ) [ )1

1 00
, 0,

n k kkt nn n n k k

n k

C
x t a t g t t s a s ds t T

n k k

−∞
− + −

= =

Γ  Γ    ≤ +   ⋅ − ∈  Γ − +∑ ∑∫ α βα β
α β

(2.9) 

where ( ) ( ) ( )1 2g t g t g t= +   and ( )( ) ( )1 2 ... 1
!

k
n

n n n n k
C

k
− − − +

= .                                            

Corollary  2. Under the hypothesis of  Lemma 4, let  ( )a t  be a nondecreasing function on [ )0,T . 

Then    ( ) ( ) ( ) ( ) ( )( )x t a t E g t t tα β
κ α β ≤ Γ + Γ  

, ( ),minκ α β=                                        (2.10) 

. 
3. Main Results 
 
3.1 Finite-time stability of nonhomogeneous neutral fractional-order time-varying delay systems 
with nonlinear parameter uncertainties and perturbations 
 

In  this section we study the problem of sufficient conditions that enable system trajectories to 
stay within the a priori given sets for the class of neutral two-term fractional order system with 
time-varying delays in state with nonlinear parameter uncertainties and perturbations, presented 
by state equation: 

( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( )( )( ) ( )

0 1

1 0

D

D , ,

c
x

c
N xN x

t A t A t t

A t t B t f x t t g x t t t Cw t

= + − +

+ − + + + − +

α

β

τ

τ τ

x x x

x u
          (3.1) 

with the associated continuous function of initial state: 

( ) ( ) [ ], ,0 ,x xmt t t= ∈ −τx ψ                                                             (3.2) 

Let us denote by ( ), ,0 , n
x MC R − τ  the Banach space of all continuous real vector functions 

mapping the  interval , ,0x Mτ −  , into nR  with the topology of the uniform  convergence where 

norm of an ψ  element  is defined as: ( )0supC τ θψ ψ θ− ≤ ≤= . D , DC C
t t

βα  denote Caputo 

fractional derivatives of order ,α β , 0 1,< < <β α  a well as ( ) nx t R∈  is the state vector and 

( ) mu t ∈  is the control input; 0A , 1A , 1NA , 0B  and C are constant matrices with appropriate 
dimensions; ( ) ( ),x xNt tτ τ are time-varying discrete delay and neutral delay in state respectively 
which satisfy:   

( ) ( ) [ ]0 0 00 ,0 , , , , 0x xM xN xNt t t J t t T t R T≤ ≤ ≤ ≤ ∀ ∈ = + ∈ >τ τ τ τ                  (3.3) 

and xmτ  is defined to be ( )max ,xM xNτ τ . Behavior of system (3.1) with given initial function 
(3.2) is observed over time interval [ ]0 0, ,J t t T R= + ⊂  where T  may be either a real positive 
number or symbol .∞  Here, it is introduced next assumption that nonlinear parameter 
perturbations ( )( ),f x t t  and ( )( )( ),xg x t t t−τ  can be described as linear vector functions  as 

follows, [4,5]:  
( )( ) ( ) ( ) ( )( )( ) ( ) ( )( )0 1, , ,x xf x t t A t x t g x t t t A t x t t= ∆ − = ∆ −τ τ                        (3.4) 
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where ( )0A t∆  and ( )1A t∆  are time-varying parametric structured uncertainties.  Also, 

( ) nw t R∈  is the disturbance vector, which has upper bound as follows:  ( ) [ ], 0,ww t t T< ∀ ∈γ  

In this paper, the norm ( )⋅  will denote any vector norm, i.e. ( ) 1 ,⋅  ( ) 2 ,⋅  or ( ) ,
∞

⋅  or 

corresponding matrix norm induced by the equivalent vector norm, i.e. 1 ,−  2 ,−  or ∞ − norm, 
respectively. It is assumed the usual smoothness condition, which means that there are no 
problems with existence, uniqueness and continuity of solutions of systems with respect to initial 
conditions,[19].  

Before proceeding further, the definition of finite-time stability will be given for 
nonhomogeneous system (3.1) with associated initial function (3.2). 

Definition 4 [23]: The time-delay system given by nonhomogeneous state equation (3.1) 
satisfying initial conditions (3.2) is finite-time stable w.r.t. ( ){ }0, , , , , ,u t J ⋅δ ε γ  ,δ ε<  if and 

only if: 

                   ( ) ( ), , , .x uC t t J t t J< < ∀ ∈ ⇒ < ∀ ∈δ γ εψ u x                          (3.5) 

Theorem 1: The nonhomogeneous nonlinear neutral two-term fractional order time varying delay 
system (3.1) satisfying initial conditions (3.2) is finite-time stable w.r.t. ( ){ }0, , , , ,u J ⋅δ ε γ  

,δ ε<  if the following condition holds: 

( )
( ) ( )

( )
( ) ( ) ( ) ( )( )

( ) ( )

max 1 max 1

0 0
0

1
1 1

, ,
1 1

N N

u w

A t At
E t t

t t
t J

−
Σ −Σ

    
 + + + Γ − + Γ   Γ − + Γ + Γ − Γ      

+ + ≤ ∀ ∈
Γ + Γ +

α β α
α β α

κ

α α

σ ση η
α β α

α β α α β α

γ γ ε
α α δ

         (3.6) 

where:          
( ) ( )

[ ]
( )

[ ]
( )

1
max max 0 0

0

0 0 0 0 0 1 1
0, 0,

, , 0,1,

/ , / , sup , sup ,

i i

n
A A i i

i

u u w w
t T t T

A A i b B c C

b c A t a A t a

=

Σ
=

∈ ∈

= = + ∆ = = =

= = ∆ = ∆ ∆ = ∆

∑η η η σ σ

γ γ δ γ γ δ
       (3.7) 

with ( )maxσ ⋅  being the largest singular value of a matrix ( ).⋅  

Proof: Following the property of the fractional order 0 1,β α< < <  a solution can be 
obtained in the form of the equivalent Volterra integral equation, where is 0 0 :t =  

      

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )
( ) ( )( )
( ) ( ) ( )( ) ( )( )( )

1
1 1

0

0 11

00

10
1

1
, ,

t

x N x xm N xN

t x

x

tt A t s A x s s ds

A s A t s
t s ds

B u s Cw s f x s s g x s s s

−
− −

−

= − ⋅ − + − − +
Γ − + Γ −

 + −
 + −

Γ  + + + + − 

∫

∫

α β
α β

α

ψ ψ τ τ
α β α β

τ

α τ

x

x x
     (3.8) 

Now, using the norm ( )⋅  on equation (3.8), we can obtain  an estimate of the solution ( ) :tx  
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( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )( )( )

1
1 1

0

1
0 1 0

0

10
1

1 , ,

t

x N x xm N xN

t

x x

t
t A t s A x s s ds

t s A s A t s B u s Cw s f x s s g x s s s ds

−
− −

−

≤ + − + − −
Γ − + Γ −

 + − + − + + + + − Γ

∫

∫

α β
α β

α

ψ ψ τ τ
α β α β

τ τ
α

x

x x

(3.9) 

Also, taking into account  previous assumption, one can obtain:                                            (3.10) 

( ) ( )( )
( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( )

( )( ) ( ) ( )( ) ( )( ) ( ) ( )

0 1 0 0 1 1

0 0

max 0 0 max 1 1 0

, ,
x x

x

x

A t A t t A A t A A t t

B t Cw t f x t t g x t t B t Cw t

A a t A a t t B t C t

+ − + + ∆ + + ∆ −
=

+ + + + − + +

≤ + ∆ + + ∆ − + +

τ τ

τ

σ σ τ

x x x x

u u

x x u w

         

where: ( )( ) ( ) [ ]{ }sup : , .x xmt t t t t tτ τ− ≤ ∈ −x x     Applying this inequality, expression (3.10) 

can be rewritten as follows: 

( ) ( ) ( ) ( )( ) ( ) ( )

[ ]
( ) ( ) ( )

0 0 1 1 0

0
,

sup , 0 ,
xm

x

x C
t t t

A A t A A t t B t Cw t

t b t c w t t +
Σ

∈ −

+ ∆ + + ∆ − + + ≤

 
 ≤ + + + >
 
 





τ

τ

η

x x u

x ψ u
                           (3.11) 

Then,taking into account (3.9) and (3.11) we can get                                                               (3.12) 

( ) ( )
( ) ( ) ( ) ( ) ( )( )

( ) ( )
[ ]

( ) ( ) ( )

1max 1
max 1

0

1
0

,0

11
1

1 sup ,
xm

t
N

x N xNC

t

x C
s s s

A t
t t s A x s s ds

t s s b s c w s ds

−
− −

−
Σ

∈ −

 
 ≤ + + − − +

Γ − + Γ −  
  
  + − + + +
  Γ

  

∫

∫




α β
α β

α

τ

σ
ψ σ τ

α β α β

η
α

x

x ψ u

In view of the  conditions for ( ) ( ),u ws w s< <γ γu  , one may rewrite the above inequality as     

( ) ( )
( ) ( )

( )
( ) ( )

[ ]
( )

( ) ( )
[ ]

( ) ( ) ( )

1 1max max 1

,0

1 0

,0

1 sup
1 1

1 sup
1 1

N N

xm

xm

tA A
x C

s s s

t
u w

s s s

t t
t t s s ds

b t c t
t s s ds

−
− −Σ

∈ −

−
Σ

∈ −

 
 ≤ + + + − + Γ − + Γ + Γ −
  

  
  + − + +

  Γ Γ + Γ +  

∫

∫









α β α
α β

τ

α α
α

τ

σ ση
ψ

α β α α β

γ γ
η

α α α

x x

x

  (3.13) 

Note that ( )e t  (3.14) is nondecreasing function on [ ]0 0,J T=  and ( )
( ) ( )

max 1 ,NA Σ
Γ − Γ

σ η
α β α

 are 

monotonically increasing, nonnegative continuous functions on [ ]0 0,J T= .     

( ) ( )
( ) ( )

max 11
1 1

N
x C

A t t
e t

−
Σ

 
 = + +

Γ − + Γ +  

α β ασ η
ψ

α β α
.                                          (3.14) 

Then, using  Lemma 3, [21], we have: 
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( ) ( ) ( )
( ) ( )

[ ]
( )

( ) ( )
[ ]

( ) ( ) ( )

,

1

1max 1

, ,0

0

,0

sup sup

sup
1 1

x M xm

xm

t
N

t t t s s s

t
u w

s s s

A
t e t t s s ds

b t c t
t s s ds

−

− −

 ∈ − ∈ − 

Σ

∈ −

≤ + − +
Γ −

  
  + − + +
  Γ Γ + Γ +
  

∫

∫








α

α β

τ τ

α α

τ

σ
α β

γ γη
α α α

x x

x

            (3.15) 

From Lemma 4 [19], we obtain: 

( ) ( ) ( ) ( ) ( ) ( )( )
, ,

sup
x Mt t t

t t e t E g t t t−

 ∈ − 

 ≤ ≤ Γ − + Γ  

 α β α
κ

τ
α β αx x                       (3.16) 

where ( ) ( ) ( ) ( )
( ) ( )

max 1
1 2 1 2, ,NA

g t g t g t g g Σ= + = =
Γ − Γ
σ η

α β α
  and ( ),minκ α α β= − .So, it yields:     

( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( )

max 1 01
1 1 1 1

N u wA t t b t c t
t E g t t t

−
Σ −

 
  ≤ + + Γ − + Γ + +  Γ − + Γ + Γ + Γ +  

α β α α α
α β α

κ
σ η γ γ

δ α β α
α β α α α

x    (3.17) 

Finally, using the basic condition of Theorem 1,we can obtain  the required finite time stability 
condition: 

( ) 0, .t t Jε< ∀ ∈x                                                                    (3.18) 

From Theorem 1, it follows the next result. 

 

Theorem 2: The  homogeneous system is given by (3.1), when ( ) 0,t ≡u  0,t J∀ ∈  and without 

perturbations and disturbance ( )( ) ( )( )( ) ( ), 0, , 0, 0xf x t t g x t t t w t≡ − ≡ ≡τ , satisfying 

function of initial state (3.2) is finite-time stable w.r.t. ( ){ }0, , , ,Jδ ε ⋅  ,δ ε<  if the following 

condition is satisfied: 

( )
( )

( ) ( )( )
( )

( )
( )

( ) ( )( )
( ) ( ) ( )( )

max 0 max 1max 1

max 0 max 1max 1
0

1
1 1

, ,

N

N

A A tA t

A AA
E t t t J

−

−

 +
 + + ⋅
 Γ − + Γ +
 

  +
  + Γ − + Γ ≤ ∀ ∈
 Γ − Γ   

αα β

α β α
κ

σ σσ
α β α

σ σσ εα β α
α β α δ

           (3.19) 

Proof: The proof immediately follows from the proof of the  previous Theorem 1. 
 
4. Numerical example 
 
To demonstrate the effectiveness of the previously obtained FTS result, it is considered 
nonhomogeneous nonlinear perturbed neutral fractional time-varying delay system with 
disturbance as follows: 

( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( )( )( ) ( )

0.5
0 1

0.1
1 0

D

D , ,

c
x

c
N xN x

t A t A t t

A t t B t f x t t g x t t t Cw t

= + − +

+ − + + + − +

τ

τ τ

x x x

x u
                (4.1) 
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where: 

( ) ( )

( )

0 0 1

1 1 0

0,2 0 0 3 0.3 0.2 0.02 1 sin 0
, , , ,

0,1 0,3 1 0 0.4 0.1 0 0.03cos

0,2 0,1 0,3 0 0.02cos 0
, , ,

0 0,1 0,05 0,2 0 0.04cosN

t
A B C A t

t

t
A A A t

t

− − −  −     
= = = ∆ =       −       

−     
= = ∆ =     − −     

(4.2) 

and 0 0, 0.1x xNt τ τ= = = , 0.1,xmτ =  with associated functions: ( ) ( ) [ ]T0,05 0,05xt t= =x ψ  

[ ] [ ]0 0, , 0,1 0xmt t t∈ − = −τ . The task is to analyze the FTS with respect to 

[ ]{ }00.2, 50, 2, 0,3  s .u J= = = =δ ε γ  From the initial functions and given state equation, we 
have:  
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( ) ( )1 22 2
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as well as: 
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= + ∆ = = + ∆ =

= + = =

η σ η σ

η η η γ
                                 (4.4) 

( )0 0 max 0 0 0 03, 0.2395, / 60, / 2.395,u u w wb B B c C b c= = = = = = = = =σ γ γ δ γ γ δ  

 

Applying the condition of the Theorem 1, it follows: 

( ) ( ) ( ) ( ) ( ) ( )( )
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⋅
+ + ≤

Γ Γ

(4.5) 

so, we obtain the estimated time of finite-time stability e 0,635 s.T ≈  

 
5. Conclusion 

 
In this paper, finite-time stability analysis for a class of nonhomogeneous nonlinear perturbed 

neutral fractional system with multiple time-varying delays and disturbance has been 
investigated. By use of the generalized Gronwall inequality, new criterion for the FTS have been 
developed. A sufficient condition for robust FTS for this class of neutral fractional time-varying 
delay systems has been proposed. Finally, a numerical example has been provided to illustrate the 
effectiveness and the benefit of the proposed novel stability criterion of FTS. 
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