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Abstract 
 

 The paper considers the brachistochronic motion of a variable mass nonholonomic 

mechanical system [4] in a horizontal plane, between two specified positions. Variable mass 

particles are interconnected by a lightweight mechanism of the ’pitchfork’ type. The law of the 

time-rate of mass variation of the particles, as well as relative velocities of the expelled particles, 

as a function of time, are known.  Differential equations of motion, where the reactions of 

nonholonomic constraints and control forces figure, are created based on the general theorems of 

dynamics of a variable mass mechanical system [6]. The formulated brachistochrone problem, 

with adequately chosen quantities of state, is solved, in this case, as the simplest task of optimal 

control by applying Pontryagin’s maximum principle [1]. A corresponding two-point boundary 

value problem (TPBVP) of the system of ordinary nonlinear differential equations is obtained, 

which, in a general case, has to be numerically solved [2]. Numerical procedure for solving the 

TPBVP is performed by the shooting method. On the basis of thus obtained brachistochronic 

motion, the active control forces, along with the reactions of nonholonomic constraints, are 

determined. The analysis of the brachistochronic motion for different values of the initial position 

of a variable mass particle B is presented.  
 

Keywords: Brachistochrone, variable mass, nonholonomic system, Pontryagin’s maximum 

principle, optimal control 

 

 

1. Introduction 
 

A nonholonomic mechanical system [4] is composed of two variable mass particles, A 

and B, whose motion is constrained by the imposition of perpendicularity of the velocities by 

means of the Chaplygin blades of negligible masses, as shown in Fig. 1a. In order to develop the 

differential equations of motion of a variable mass nonholonomic mechanical system (henceforth 

referred to as ’the system’), as well as for the needs of further considerations, first, two Cartesian 

reference coordinate systems must be introduced:  the stationary coordinate system Oxyz , whose 

coordinate plane Oxy coincides with the horizontal plane of motion, and the non-stationary 

coordinate system Aξης that is rigidly attached to point A of the system, so that the coordinate 

plane Aξη
 

coincides with the plane Oxy (refer to Fig. 1a). The axis of the non-stationary 
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coordinate system Aξ is determined by the direction AB , that is B Aξ , whereas unit vectors of 

the non-stationary coordinate system axes are ,λ μ
 

 
and ν


, respectively. Variable mass 

particles A and B are interconnected by a lightweight mechanism of the ’pitchfork’ type, which 

allows  the distance constAB ξ .  to change. The configuration of the considered system relative 

to the system Oxyz  
is defined by a set of Lagrangian coordinates  1 2 3 4q ,q ,q ,q , where 

1q x
 

and 
2q y

 
are Cartesian coordinates of the point A, 

3q φ
 
is the angle between the axis Ox and 

the axis Aξ , whereas
4q ξ

 
is the relative coordinate of the variable mass point B relative to the 

non-stationary coordinate system.  
 

 

Fig. 1. Variable-mass nonholonomic mechanical system 

 

In accordance with the restriction of motion of the points A and B of the system, homogeneous 

nonholonomic constraints can be written in the following form [4], [5] 

 
cos sin 0

sin cos 0

x φ y φ= ,

x φ y φ+ξφ= .



 

 

  
 (1) 

 
The velocity of the variable mass point A relative to the system Oxyz , which has the 

axis Aη direction, has the following form 

 sin cos ,AV x φ y φ    (2) 

where A AV V μ 
 

. The coordinates of the variable mass point B relative to the coordinate 

system Oxyz are 

 cos , sin , 0.B B Bx x ξ φ y y ξ φ z      (3) 

 

Now, based on the second nonholonomic constraint (1), and taking into account the relation (2), 

the angular velocity of the system is determined in the form 

 .AV
φ

ξ
  (4) 

The velocity of the variable mass point B relative to the system Oxyz , which has the 

axis Aξ direction, is determined based on relations (1) and (3), 

 BV ξ ,   (5) 
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where B BV V λ. 


 

 

 Differential equations of motion of the variable mass system will be developed based 

on general theorems of the dynamics of variable mass system [6], that is, based on the momentum 

change theorem as well as on the moment of momentum theorem for the moving point A,  

 
   

   

,

.

s rel rel
R A A A B B B

s rel relA
A A A A A A B B B B

dK
F V v m V v m

dt

dL
V K M ρ V v m ρ V v m

dt

    

        


   

 


       

 

 (6) 

 

where rel
Av


and rel

Bv


are relative velocities of the particles expelled from points A and B of the 

system, whose directions coincide with the axes Aη and Aξ respectively (directions represented in 

Fig. 1a), whereas Aρ


and Bρ


are relative vectors of the variable mass points A and B relative to the 

origin of the non-stationary coordinate system Aξηζ.  

The law of the time-rate of masses variation of the particles A and B as a function of time are 

       0 ,mk t
A Bm t m t m t m e


    (7) 

where mk is the determined positive constant, whereas 0m is a mass of the particles A and B at the 

initial time moment 0 0t  . Relative velocities of the particles expelled from points A and B of the 

system are 

 rel rel
A Bv v v,   (8) 

where v is the determined positive constant. 

For vector relations (6) there are the following corresponding scalar differential equations relative 

to the axes of the defined non-stationary coordinate system Aξηζ , which, after a brief 

rearrangement, can be written in the form as follows 
 

 

 

 

2

1

,

,

,

A B A m

B A B m

A B B

m V φ V F R k vm

m V φ V F R k vm

mV V R ξ

   

    





  (9) 

 

where 1F and 2F are control forces. Now, based on the momentum change theorem, differential 

equations of motion can be generated for the BC segment of the system (see Fig. 1b), the rod BC 

being of negligible mass, relative to the axes of the system Aξηζ  

 2 ,

,

B m

B B

mV F k vm

mV φ R R

 

 




 (10) 

where R is the projection of the resultant of a system of internal forces.  

Solving the system of equations (9) and (10) determines the reactions of nonholonomic 

constraints AR and BR , the control forces 1F and 2F , as well as the resultant of a system of internal 

forces R , to realize motion as a function of defined quantities of state and a corresponding 

derivative 
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  

 

2

1

2

,

,

,

,

0.

A
A

A B
B

A m

B m

V
R m

ξ

V V
R m

ξ

F m V k v

F m V k v

R

 



 

 







 (11) 

   

As it is known, the realization of the brachistochronic motion of the meachanical systems 

can, in general, be accomplished by the control forces, whose total power during brachistochronic 

motion equals zero, and which can be represented  in the form of active control forces, the 

reactions forces of constraints, or by their mutual combinations. In our case, the brachistochronic 

motion is realized by the active control forces  1 1F F t μ
 

and  2 2F F t λ


whose power during 

brachistochronic motion equals zero 

 1 2 0,G
A BP F V F V    

   
  (12) 

that is 

 1 2 0.A BFV F V   (13) 

 

 

2. Brachistochronic motion as the problem of optimal control  

  In this section, the problem of brachistochronic motion of the system is formulated as the 

problem of optimal control [1]. In order to define the equations of state which describe the motion 

of the considered system in the state space, first, from conditions (13), taking into account the law 

of change in the control forces 1F and 2F given in (11), the following relation can be established 

  Φ 2 m A Bk v V V ,   (14) 

where 

 2 2Φ A BV V .   (15) 

Now, based on (1), (2), (4), (5) and (14), the equations of state can be created in the form 

 

 

sin ,

cos ,

,

,

Φ 2 .

A

A

A

B

m A B

x V φ

y V φ

V
φ

ξ

ξ =V

k v V V



 



 











 (16) 

The coordinates of the initial state , ,x y φ  
and ξ , as well as the function of the quadratic form of 

velocities Φ , are determined at the initial position of the system on manifolds: 
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     

   

0 0 0 0

0 0 0 0

0, 0, 0, 0,

, Φ Φ ,

t x t y t φ t

ξ t ξ t

   

 
 (17) 

as well as the coordinates of the end state , ,x y φ  
and ξ  at the terminal position on manifolds: 

 
   

   

, , ,

, ,

f f f f f

f f f f

t t x t x y t y

φ t φ ξ t ξ

  

 
 (18) 

where ft is the in advance unknown value of the final time moment corresponding to the end state 

of the system on manifolds (18). The brachistochrone problem of the system motion described by 

differential equations of state (16), consists of determining the coordinates of optimal control 

AV and BV , as well as their corresponding state coordinates , ,x y φ , ξ  and Φ , so that the system 

starting from the initial state on manifolds (17) moves to the end state on manifolds (18) in a 

minimum time. This can be expressed in the form of condition so that the functional 

 

0

,

t f

t

I dt   (19) 

on the interval 0 , ft t 
   

has a minimum value. 

In order to solve the problem of optimal control, formulated by Pontryagin’s maximum 

principle [1], the Pontryagin function is created in the form as follows 

    2 2
0 Φsin cos 2 Φ ,A

x A y A φ ξ B m A B A B
V

H λ λ V φ λ V φ λ λ V k vλ V V + μ V V
ξ

          (20) 

where 0 const. 0  ,  x yλ , λ λ  , φλ , ξλ  
and Φλ  

are the conjugate vector coordinates, where it can be 

taken that 0 1λ   , whereas μ  
is a multiplier corresponding to relation (15). Taking into account 

the boundary conditions (17) and (18), as well as the fact that time does not figure explicitly in 

equations of state (16), the defined problem of optimal control can be solved by a straightforward 

application of Theorem 22 [1]. 

Based on the Pontryagin function (20), the conjugate system of differential equations has 

the form 

  

Φ2

0,    0,

cos sin ,    

,

x y

φ A x y

A
ξ φ

λ λ

λ V λ φ+ λ φ

V
λ λ λ μ,

ξ

 

 

 

 



 

 (21) 

wherefrom it follows that const.xλ   
and const.yλ 

 
Having in mind that the initial state (17) is completely defined, the transversality conditions 

corresponding to the initial position of the system are identically satisfied.  

The transversality conditions at the terminal position of the system on manifolds (18) have the 

following form 
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                Φδ δ δ δ δΦ 0,x f y f φ f f ξ f f f fλ x t λ y t + λ t φ t λ t ξ t λ t t     (22) 

whereas, in accordance with (18), the variations of coordinates corresponding to the terminal 

position of the system are 

        δ 0, δ 0, δ 0,δ 0.f f f fx t y t φ t ξ t     (23) 

Taking into account the independence of variation  δΦ ft , based on (22) and (23), it is arrived at 

the following boundary condition 

  Φ 0.fλ t   (24) 

If controls belong to an open set, as in this case, the conditions based on which the optimal 

control is defined can be expressed in the form [1] 

  
2

0, 0,   ,  =1,2 .
opt opt

i j
i i j

H H
u u i j

u u u

   
          u u

 (25) 

When time ft is not determined in advance, as in this case, in solving the system of equations (16) 

and (21) in the final form, the condition should be added, following from a straightforward 

application of Theorem 1 [1], that the value of the Pontryagin function on the optimal trajectory 

equals zero for 0 , ft t t  
   

   0,H t   (26) 

that is, in accordance with the Pontryagin function (20) 

    2 2
Φ1 sin cos 2 Φ 0.A

x A y A φ ξ B m A B A B
V

λ V φ λ V φ λ λ V k vλ V V + μ V V
ξ

           (27) 

Now, based on (20), (25) and (27), the value of the multiplier μ is determined, as well as of the 

control functions AV and BV in the following form 

 

 

Φ

Φ

1 1
, sin cos 2 Φ,

2Φ

2 Φ.

A x y m φ

B ξ m

μ= V λ φ λ φ+ k vλ + λ
ξ

V λ k vλ

 
   

 

 

 (28) 

 

Based on condition (26) defined at the initial time moment, as well as (17), (27) and (28), the 

conjugate vector coordinate φλ is determined at the initial time moment 

           
2

0 0 Φ 0 0 Φ 01/2
0

1
2 2 .

Φ
φ y m ξ mλ t ξ t λ k vλ t λ t k vλ t

 
      

 

 (29) 

Now, based on (16), (21) and (28), the basic and conjugate system of differential equations can be 

created in the form 
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 

 

 
 

 

 

Φ

Φ

Φ

Φ2

Φ

sin sin cos 2 Φ
= ,

cos sin cos 2 Φ
= ,

sin cos 2 Φ
, 2 Φ,

2 sin cos 4 Φ
Φ ,λ 0,

λ cos λ sin
λ 0,λ

φ x y m

φ x y m

φ x y m

ξ m

m φ x y m ξ

x

x y φ

y φ

φ λ ξ λ φ λ φ+ k vλ
x

ξ

φ λ ξ λ φ λ φ+ k vλ
y

ξ

λ ξ λ φ λ φ+ k vλ
φ ξ λ k vλ

ξ

k v λ ξ λ φ λ φ+ k vλ λ

ξ

φ+ φ λ

  
 

  
 



  
 

  

   
 

 


  









   

 

Φ

Φ

Φ3

sin cos 2 Φ
,

sin cos 2 Φ 1
λ ,λ ,

2Φ

x y m

φ φ x y m

ξ

ξ λ φ λ φ+ k vλ

ξ

λ λ ξ λ φ λ φ+ k vλ

ξ

 
 

  
 

   

 (30) 

 

whereas the state coordinates, as well as the conjugate vector coordinates, based on (17) and (29), 

are determined at the initial time moment 

 

 

     

       

   

0 0 0 0

0 0 0 0 0 0 Φ 0 Φ0

2

0 0 Φ0 0 Φ01/2
0

0, 0, 0, 0,

, Φ Φ , ,

1
2 2 .

Φ

ξ ξ

φ y m ξ m

t x t y t φ t

ξ t ξ t λ t λ λ t λ

λ t ξ λ k vλ λ k vλ

   

   

 
      

 

 (31) 

 

Numerical procedure for solving the corresponding TPBVP of the system of ordinary nonlinear 

differential equations of the first kind is based on the shooting method [2]. The five-parameter 

shooting consists of determining the unknown coordinates of the conjugate 

vector xλ , yλ , 0ξλ and Φ0λ as well as a minimum required time ft .  

 

The TPBVP is solved for the following values of the parameters 

 

2

0 02

m 1 m
Φ 2 ,  2kg,  0.2 , 1 ,

s ss

=1.5m,  = 1m, rad, 3m.
2

m

f f f f

m k v

π
x y φ ξ

   

  

 (32) 
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Table 1 shows the TPBVP solutions for different values of the initial position of the variable mass 

point B.  

Solutions
  s / mxλ   s / myλ  

 ξ0 s / mλ  2 2
Φ0 s / mλ  

   
 sft  

0 1mξ   0.710261 1.258352  0.753975  0.387281 1.999254  

0 0.8mξ   0.317475  0.413259  0.290266  0.351329  1.888149  

0 0.6mξ   0.121316  0.543731  0.326574  0.344384  1.894710  

Table 1. TPBVP solutions for different values of 0ξ  

Figures 2 - 6 show the laws of change in the state coordinates, the reactions of nonholonomic 

constraints, and the control forces at different values of the initial position of variable mass point 

B displayed in Table 1.  
 

 
Fig. 2. Trajectories of variable mass points A and B 

 

 
Fig. 3. Graphs of angle φ and relative coordinate ξ  
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Fig. 4. Graphs of control functions

 AV and BV
 

 

 
Fig. 5. Graphs of reactions of nonholonomic constraints

 AR and BR
 

 

 
Fig. 6. Graphs of control forces

 1F and 2F  
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3. Conclusions 

 

This paper considers the brachistochronic planar motion of a variable mass nonholonomic 

mechanical system, with specified initial and final positions. The procedure for creating 

differential equations of motion based on the general theorems of dynamics of a variable-mass 

mechanical system is presented.  The formulated brachistochrone problem, along with adequately 

chosen quantities of state, is solved as a task of optimal control by applying Pontryagin’s 

maximum principle. Numerical procedure for solving the TPBVP is based on the shooting 

method. Afterwards, the reactions of nonholonomic constraints as well as the control forces are 

determined to realize the brachistochronic motion.  The analysis of brachistochronic motion at 

different values of the initial position of the variable mass point B is performed. Authors consider 

that the results obtained in this work can be extended to the general case of brachistochronic 

motion of a variable mass nonholonomic mechanical system, which will be the subject of further 

investigations.  
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