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Abstract. The paper analyzes the problem of brachistochronic motion of a nonholonomic 
mechanical system, using an example of a simple car model. The system moves between 
two default positions at an unaltered value of the mechanical energy during motion. 
Differential equations of motion, containing the reaction of nonholonomic constraints and 
control forces, are obtained on the basis of general theorems of dynamics. Here, this is more 
appropriate than some other methods of analytical mechanics applied to nonholonomic 
systems, where the provision of a subsequent physical interpretation of the multipliers of 
constraints is required to solve this problem. By the appropriate choice of the parameters of 
state as simple a task of optimal control as possible is obtained in this case, which is solved 
by the application of the Pontryagin maximum principle. Numerical solution of the two-
point boundary value problem  is obtained by the method of shooting. Based on the thus 
acquired brachistochronic motion, the active control forces are determined as well as the 
reaction of constraints. Using the Coulomb laws of friction sliding, the minimum value of 
the coefficient of friction is determined to avoid car skidding at the points of contact with 
the ground. 

 
 

1. Introduction  
 

As is well known the classical brachistochrone problem was proposed by Johann 
Bernoulli in 1696 for the case of a particle moving in a vertical plane under the influence of 
its own gravity in a homogeneous field of gravity. Much later, the generalization of the 
classical brachistochrone problem was carried out within the calculus of variations [1]. A 
detailed review of literature related to the problems of brachistochronic motion can be 
found in [2] and [3]. The problems considered in the present paper involve a review of 
references on the Bernoulli’s case of the classical brachistochrone extended to the system of 
rigid bodies.  

This paper, using the example of a nonholonomic mechanical system with limited 
reactions of constraints, presents the procedure of creating the differential equations of 
motion where both reactions of nonholonomic constraints and control forces figure, based 
on the general theorems of dynamics [5]. This paper also provides the procedure for solving 
brachistochronic motion of a nonholonomic mechanical system in a plane at the steady 
value of mechanical energy during motion, when initial and end positions are specified.  
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2. Description of a nonholonomic system model  
 

In order to generate differential equations of motion of a nonholonomic mechanical 
system, using the example of a simplified vehicle model (see Fig. 1.). The vehicle 
configuration relative to the system O�� is defined by a set of  Lagrangian coordinates 
� �1 2 3 4q ,q ,q ,q , where 1 2i B Bq � q �� �  are Cartesian coordinates of the point B, 3q �� is the 
angle between the axis O� and axis Ax , while 4q �� is the angle between the axis Ay and 
the vehicle front axle axis. Further analysis refers to the case when point  A cannot move in 
the direction of the front axle axis, while point B of the vehicle cannot move in the direction 
of the rear axle axis (lateral slipping of the front and rear axle is prevented). Such vehicle 
motion is limited by two ideal independent nonholonomic constraints 
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During motion, the vehicle is acted on by the control force � �1 1F F t�
� �

along the axis Ax , as 
well as by the drag, proportinate to the first degree of the velocity of point C , with the 
coefficient of proportionality 2k , where 2 2 CF k V� �

� �
. During motion, the vehicle front axle 

is acted on by the control moment � �1 1L L t� , around the vertical axis perpendicular to the 
plane of motion, the resistance moment 2L , proportionate to the relative angular velocity of 
axle rotation, where 2 1L k �� � , and the resistance moment 3L , proportionate to the realtive 
angle of the front axle rotation around the vertical axis, where 3 3L k �.� Now, the 
differential equations of vehicle motion 
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where 1 2 1 2,  M M M J J J� � � � end 2 2
1 2 2J M l M l J� � � � . The vectors of vehicle angular 

velocity and angular acceleration are �= �k
�� � and � = �k

�� �� , respectively. The differential 
equation of vehicle front axle rotation, has the form 
 � �2 1 1 3J � � L k � k �.� � � ��� ���  (3) 

Solving the system of equations (2) and (3), the reactions of nonholonomic constraints are 
obtained, as well as the control force and control moment  
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Also, during vehicle brachistochronic motion the principle of the conservation of 
mechanical energy holds 
 � � 2 2 2

2 2 0,  ,  2 2 0,� V � � MV J � J �� J � T�� � � � � �� � �� � �  (5) 

where 0T is vehicle kinetic energy at initial time moment 0 0.t �  

 
 
 
 

3. Brachistochronic motion as the problem of optimal control 
 

In this section, we will formulate the problem of brachistochronic motion as the problem 
of optimal control. The equations of state that describe the motion of the considered system 
in state space can be defined in the form 

 1 1

2 3

cos sin

,    ,
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where controls 1u , 2u and 3u represent the vehicle point B velocity, angular velocity, and 
relative angular velocity of the front axle rotation, respectively. The state 
coordinates ,  ,  B B� � �  and �  were determined at the initiation of motion 
 � � � � � � � �0 0 0 0 0 00,  0,  0,  0,  ,B Bt � t � t � t � t �� � � � �  (7) 
while state coordinates ,  ,  B B� � �  and � at the vehicle final position 

 � � � � � � � �,  ,  ,  ,  .f B f B f f f f ft t � t a � t b � t � � t �� � � � �  (8) 

The brachistochrone problem of vehicle motion, described by differential equations (6), 
consists in determining the controls 1u , 2u and 3u , as well as their corresponding state 
coordinates ,  ,  B B� � � and � , so that the vehicle starting from the initial state (7) moves into 
the final state (8), with unchanged value of mechanical energy (5), in a minimum time. This 
can be expressed in the form of condition, so that the functional 

 
0

,
t

t

J dt� �  (9) 

Fig. 1. (a) Simplified vehicle model; (b) front axle. 

(a) (b) 
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in the interval 0 ,  ft t� �� �  has a minimum value. In order to solve the problem of optimal 
control, formulated using the Pontryagin maximum principle [7], we will create 
Pontryagin’s function in the form as follows  
 � �0 1 1 2 3 1 2 3cos sin ,  ,  ,x y � �H 	 	 u � 	 u � 	 u 	 u 
� u u u� � � � � �  (10) 
where 0 const. 0  ,  ,  x y �	 , 	 	 	� � and �	  are coordinates of conjugate vector, where it can be 
taken that  0 1	 � � , while 
 is a multiplier corresponding to (5). Based on Pontryagin’s 
function (10), the conjugate system of differential equations is 
 � �10,  0,  sin cos ,  0.x y � x y �	 	 	 u 	 � - 	 � 	� � � �� � � �  (11) 
The conditions for determining optimal control can be expressed in the form 
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Applying the Theorem 1 [7], it follows directly that the value of  Pontryagin’s function on 
the optimal trajectory equals zero, for 0 ,  ft t t� �� � � �  
 � �1 1 2 3 1 2 31 cos sin ,  ,  0,x y � �	 u � 	 u � 	 u 	 u 
� u u u� � � � � � �  (13) 
Now, based on (12) and (13), we obtain the value of a multiplier 
 , as well as the relations 
of control in the following form 
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Based on relation (13) determined at the initial time moment, and based on (7), (12) and 
(14), we obtain the value of coordinate �	 at the initial time moment, as well as the value of 
the constant x	  
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where 0V is the velocity of point B at the initial time moment. The shooting method was 
used in numerical procedure for solving the corresponding two-point boundary value 
problem, based on (6), (7), (8), (11), (14) and (15), [8]. Shooting consists in determining the 
unknown coordinates of conjugate vector ,  x y	 	 and �	 , having in mind (15), as well as a 
minimum required time ft , so that the vehicle starting from initial state (7) moves into the 
final state (8). The two-point boundary value problem was solved for the following values 
of parameters 
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 (16) 

In accordance with (9), the time of the vehicle brachistochronic motion, as well as the 
conjugate vector coordinates, for the given values of the system parameters (16), are 

6.2296s, 0.5117,  0.5117f x yt 	 	� � � i 0.0059.�	 �  
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4. Conditions for constraints based on Coulomb sliding friction  
 
The necessary dynamic conditions for realizing such motion [6], and based on the 

Coulomb laws of sliding friction, are  
 2 2

1 1 1 2 2,    ,B AR F N 
 R N 
� � �  (17) 
where 1
 and 2
 are the coefficients of sliding friction between rear and front wheels, 
respectively, and stationary surface. Normal reactions of rear and front axle stationary 
surface are 1 3065.6NN � and 2 7823.5NN � , respectively. The diagrams below, based on 

Fig. 2. State coordinates � � � � � � � �,  ,   and B B� t � t � t � t .  

Fig. 3. Optimal controls � � � �1 2,  u t u t and � �3 .u t  

Fig. 4. Reactions of constraints � � � �,  A BR t R t , and control forces � � � �1 1,  .F t L t     
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above considerations, show the laws of minimum required values of the coefficients of 
sliding friction 1
� and 2
� in function of time.   

 
 
 
Based on above considerations, it can be inferred (see Fig. 5.) that a minimum required 
value of the coefficient of sliding friction, between stationary surface and vehicle wheels, 
is 0.5
� � .  
 
5. Conclusions 
 

Applying the Coulomb laws of sliding friction, minimum required values for the 
coefficient of sliding friction were determined, so as to prevent slipping of both vehicle rear 
and front axle, as presented in Fig. 5. Authors consider that results obtained in this paper 
can be extended to the case when the coefficients of sliding friction are below minimum 
required values. In that case, as well as in the case when control forces are constrained, the 
problem of optimal control becomes considerably more complex, which will be the subject 
of future studies. 
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