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Abstract   This paper presents a procedure for determining the global minimum 

time in the brachistochronic motion of Chaplygin sleigh [3,4] between two speci-

fied positions, with unchanged value of mechanical energy during motion. For this 

case, the problem is formulated as the simplest problem of optimal control theory 

that is solved by applying Pontryagin’s Maximum Principle [1]. The correspond-

ing two-point boundary value problem of the system of ordinary nonlinear diffe-

rential equations is obtained that is necessary, in a general case, to solve numeri-

cally [2]. The numerical procedure is based on the shooting method, with the 

requirement for the assessment of the intervals in which the missing initial 

conditions can be found. The assessment is provided of the intervals of initial 

values of the conjugate variables, so that the TPBVP  solution does not exist for 

sure outside those intervals. Graphic representation is given for corresponding 

surfaces in 3D space of the missing initial conditions, of which each surface 

corresponds to satisfying the missing conditions. A number of examples are 

provided for multiple solutions of the Maximum Principle, of which the global 

minimum is the one corresponding to the minimum time. 
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1 Introduction 

In this paper we present a procedure for determining the global minimum time in 

the brachistochronic motion of the Chaplygin sleigh [3, 4] between two specified 

positions in a horizontal plane, with unchanged value of mechanical energy during 

motion. Prior to deriving differential equations of motion, as well as for the needs 

of further considerations, two Cartesian coordinate reference systems have to be 

introduced. The immovable coordinate system Oxyz whose coordinate 

plane Oxy coincides with the horizontal plane of motion and the movable 

coordinate system Aξηζ that is stiffly attached to the knife edge, so that the 
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coordinate plane Aξη coincides with the Oxy -plane, where the Aξ -axis coincides 

with the orientation of the edge (Fig. 1). Unit vectors of the movable coordinate 

system axes are λ ,μ
 

and ν ,


 respectively. The configuration of the knife edge 

relative to the system Oxy is defined by a set of Lagrangian 

coordinates  1 2 3q ,q ,q , where 1q x and 2q y are Cartesian coordinates of the 

point A, while 3q φ is the angle between the Ox -axis and the Aξ -axis. Further 

analysis involves the case when point A is not allowed to move in the direction 

perpendicular to the edge, causing the occurrence of horizontal reaction of the 

immovable surface R Rμ
 

. The motion of the edge is limited by an ideal 

nonholonomic homogeneous constraint 

 sin cos 0.x φ y φ     (1) 

The consequence of the imposed constrained motion is equal velocityV


of 

point A of the edge to the direction of the axis Aξ , so the relation (1) can be ex-

pressed in the form 

 sin , cosx V φ y V φ,    (2) 

whereV V λ 


. In this paper, we consider the case when the center of mass of the 

edge, point C, is positioned on the Aξ -axis, i.e. C Aξ , at the distance AC a . 

The mass of the edge is m , whereas
C

I is the moment of inertia around the 

principal central axis of inertia perpendicular to the Oxy -plane. 

During the brachistochronic motion of the edge, the law of conservation of 

mechanical energy holds 

   2 2 2 2 0
2

, 0,
T

Φ V φ V a k φ
m

      (3) 

where 

 2

2
1 ,C

I
k

ma
   (4) 

and
0

T kinetic energy of the edge at initial time moment is
0

0t  . 
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Fig. 1. Chaplygin knife edge. 

2 Brachistochronic motion of the Chaplygin sleigh as the optim-

al control task 

This Section considers the problem of the brachistochronic motion of the 

Chaplygin sleigh as a task of optimal control. Equations of state that describe the 

motion of the edge in state space can be defined in the form 

 
1 1 2
cos , sin , ,x u φ y u φ φ u      (5) 

where controls
1

u and
2

u represent the velocity of point A of the edge and the angu-

lar velocity of the edge, respectively. 

State coordinates ,x y and φ are determined at the outset of motion: 

      0 0 0 0
0, 0, 0, 0,t x t y t φ t     (6) 

as well as state coordinates ,x y and φ at the final position of the edge: 

      , , , .
f f f f f

t t x t l y t l φ t φ     (7) 

The brachistochrone problem of the motion of the edge described by differen-

tial equations (5) consists in determining the controls
1

u and
2

u as well as their cor-

responding state coordinates ,  x y and φ , so that the edge starting from initial state 

(6) moves to the final state (7), with unchanged value of mechanical energy (3), 

for the minimum time. This can be expressed in the form of condition that the 

functional 
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0

,

t f

t

I dt   (8) 

in the interval
0
,

f
t t   has a minimum value. To solve the task of optimum control, 

defined by Pontryagin’s Maximum Principle [1], Pontryagin’s function is derived 

in the form as follows 

  0 1 1 2 1 2
cos sin ,  ,

x y φ
H λ λ u φ λ u φ λ u μΦ u u      (9) 

where
0

const. 0  ,  
x y

λ , λ λ  i  
φ
λ are the coordinates of conjugate vector, where it 

can be taken that
0

1λ   , while μ is a multiplier corresponding to (3). Based on 

Pontryagin’s function (9), the conjugate system of differential equations has the 

form 

  1
0, 0, sin cos .

x y φ x y
λ λ λ u λ φ- λ φ      (10) 

If controls belong to an open set, like in this case, conditions for determining 

optimal control can be expressed in the form 

  
2

0, 0,   ,  =1,2 .
i j

opti i j opt

H H
u u i j

u u u

   
          u u

 (11) 

Applying the Theorem 1 [1], it follows directly that the value of Pontryagin’s 

function on the optimal trajectory equals zero for
0
,  

f
t t t    , that is 

  1 1 2 1 2
1 cos sin ,  0,

x y φ
λ u φ λ u φ λ u μΦ u u       (12) 

as well as that, based on (10), const.
x
λ  and const.

y
λ  for

0
,  

f
t t t    . Now, 

based on (11) and (12), one obtains the value of the multiplier μ as well as the 

control function in the form as follows 

  0 0

1 2 2 2

0

2 21 1
, cos sin , λ .

4
x y φ

T T
μ u λ φ λ φ u

T m m a k
      (13) 

Based on relation (12) determined at the initial time moment, as well as on (6), 

(11) and (13), one obtains the value of coordinate
φ
λ at the initial time moment, 

whereas the conjugate vector coordinate
x
λ can be expressed in the form 
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   2 0

0

0 0

 ,    ,
2 2

φ x x

mVm
λ t ak λ λ

T T
     (14) 

where
0

V is the velocity of point A at the initial time moment. 

The fundamental and conjugate system of differential equations, based on (5), 

(10) and (13), can be given in the form as follows 

 

   

  

0 0

0 0

2 2

2 2
= λ cos λ sin cos , = λ cos λ sin sin ,

2 21
λ , λ λ cos λ sin λ sin λ cos ,

x y x y

φ φ x y x y

T T
x φ φ φ y φ φ φ

m m

T T
φ φ φ φ- φ

m a k m

 

  

 



 (15) 

whereas state coordinates ,x y and φ , as well as the conjugate vector coordinate λ
φ
, 

based on (6) and (14), are determined at the initial time moment 

         2

0 0 0 0 0

0

0, 0, 0, 0,  .
2

φ x

m
t x t y t φ t λ t ak λ

T
        (16) 

Numerical procedure for solving the corresponding two-point boundary value 

problem of the system of first-order ordinary nonlinear differential equations, 

based on (7), (15) and (16), is solved by the shooting method [2]. This method 

consists in determining the unknown coordinates of the conjugate vector
x
λ and

y
λ , 

as well as the minimum necessary time
f

t , so that the knife edge starting from the 

initial state (6) moves to the final state (7). 

3 Assessment of values for the conjugate vector coordinates in 

shooting method   

The application of shooting method requires the assessment of the interval of pa-

rameters’ values to be determined. Global assessment of the interval of values for 

the conjugate vector coordinate
x
λ can be made based on (14) 

 
0 0

,
2 2

x

m m
λ

T T
    (17) 
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whereas the assessment of the value of the conjugate vector coordinate
y
λ can be 

made based on the value of angle
f
φ at the final position of the edge, as well as by 

using both (3) and (13), in the form 

 
0

λ cos λ sin .
2

x f y f

m
φ φ

T
   (18) 

Based on the assessments of the interval of parameters’ values that is 

determined, given in (17) and (18), it can be asserted that all solutions of 

corresponding two-point boundary value problem are definitely situated within the 

specified intervals, hence the global minimum time in brachistochronic motion of 

the Chaplygin sleigh. For the case of multiple solutions of the Maximum 

Principle, global minimum is the solution corresponding to minimum time. The 

solutions of obtained two-point boundary value problem can be represented by the 

following dependencies in the numerical form [5] 

      , , , , , , , , .
f x x y f f y x y f f φ x y f

x f λ λ t y f λ λ t φ f λ λ t    (19) 

  Dependencies (19) can be graphically represented in three-

dimensional , ,
x y f
λ λ t -space, where the solutions of the system of nonlinear 

equations (19) are located at the cross-section of given surfaces. 

Two-boundary value problem is solved for the following values of the parameters 

 
2

0 2

kgm
2kg, 1m, =1.5, 200 .

s
m l k T    (20) 

4. 1. Global minimum time at the final value of the angle of the 

knife edge
2

f

π
φ =  

Based on (19) and (20), global assessment can be made of the interval of values 

for the conjugate vector coordinate
x
λ

 

 0.0707 0.0707,
x
λ    (21) 
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whereas the assessment of the interval of values for the conjugate vector coordi-

nate
y
λ can be made based on (18) and (20), as well as the final values of the angle 

of the knife edge / 2
f
φ π

 

 0.0707 0.0707,
y
λ    (22) 

which is graphically represented in Fig. 2. 

In accordance with (8), the time of brachistochronic motion of the edge as well 

as the conjugate vector coordinates for specified values of the parameters (20), are 

0.199832 s, 0.0303507s/m
xf

t λ  and 0.0303507s/m.
y
λ 

 
Global minimum time in the brachistochronic motion of the edge can be given 

based on graphic representation of the solution of the system of nonlinear 

equations (19), as well as on the assessment of coordinates (21) and (22), as 

shown in Fig. 3. 

 

 

 

 

 

 

 

 

 

   

   

   

Fig. 2. Assessment of conjugate vector coordinates xλ and yλ at / 2.fφ π            Fig. 3. Cross-

section of surfaces    , , , , ,f x x y f f y x y fx f λ λ t y f λ λ t  and  , ,f φ x y fφ f λ λ t at / 2.fφ π  

It is evident from Fig. 3 that the solution of corresponding two-point boundary 

value problem is unique, i.e. the cross-section of surfaces, corresponding to the 

fulfillment of the final position of the edge, determined by state coordi-

nates ,
f f

x y and
f
φ is at a single point. 
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Fig. 4. Trajectory and velocity of point A of the knife edge at / 2.fφ π               

4. 2. Global minimum time at the final value of the angle of the 

knife edge
30

f

π
φ =  

Based on (18), (20) and final value of the angle of the edge / 30
f
φ π  ,an assess-

ment can be made of the interval of values for the conjugate vector coordinate
y
λ

 

  0.6765 9.5144 0.6765 9.5144 ,
x y x
λ λ λ      (23) 

whereas the assessment of coordinate
x
λ is given in (21), as graphically represented 

in Fig. 5. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Assessment of conjugate vector coordinates xλ and yλ at / 30.fφ π            Fig. 6. Cross-

section of surfaces    , , , , ,f x x y f f y x y fx f λ λ t y f λ λ t  and  , ,f φ x y fφ f λ λ t at / 30.fφ π  
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For this case, the solution of corresponding two-point boundary value problem 

is not unique. To find all possible solutions of the Maximum Principle, it is more 

convenient to use graphic analysis of the solution in 3D space of the missing pa-

rameters, as shown in Fig. 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Solutions at / 30fφ π shown in Table 1. 

Solutions of two-point boundary value problem at the final value of the angle 

of the knife edge = /30
f
φ π , satisfying the Maximum Principle, in accordance with 

(8), are shown in Table 1. 

 

Table 1. 

Solutions 
  x
λ  

 y
λ  

  f
t  

First solution -0.042973 0.138484 0.229455 

Second solution 0.0526389 0.151529 0.361141 

Third solution -0.0113855 0.198418 0.368861 

 

Global minimum time in the brachistochronic motion of the knife edge, corres-

ponding to the final value of the angle of the edge / 30
f
φ π , corresponds to the 

First solution presented in Table 1., i.e., 0.229455 s
f

t  . 
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Fig. 8. Trajectory and velocity of point A of the knife edge at / 30fφ π corresponding to the 

First solution. 

 

 

 

  

 

   

 

 

 

 

 

Fig. 9. Trajectory and velocity of point A of the knife edge at / 30fφ π corresponding to the 

Second solution. 

 

 

 

 

 

 

 



11 

Fig. 10. Trajectory and velocity of point A of the knife edge at / 30fφ π corresponding to the 

Third solution. 

4. 3. Global minimum time at the final value of the angle of the 

knife edge 0fφ =  

It should be taken into account that at the final position of the edge, corresponding 

to the value of the angle 0
f
φ = , as well as (18), the assessment cannot be made of 

the interval of values for the conjugate vector coordinate
y
λ , whereas the assess-

ment of coordinate
x
λ is given in (21). 

For this case, the solution of corresponding two-point boundary value problem 

is not unique either, and can be given based on graphic representation of the solu-

tion of the system of nonlinear equations (19), as well as on the assessment of the 

coordinate (21), as shown in Fig. 11. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Solutions at 0fφ  shown in Table 2. 

The solutions of two-point boundary value problem at the final value of the an-

gle of the edge =0
f
φ , satisfying the Maximum Principle, in accordance with (8), 

are shown in Table 2. 

 

Table 2. 

Solutions 
  x
λ  

y
λ  

f
t  

First solution -0.0391831 0.137402 0.239187 

Second solution -0.0111406 0.198342 0.379927 



12  

Global minimum time in the brachistochronic motion of the knife edge, corres-

ponding to the final value of the angle of the edge 0
f
φ  , corresponds to the First 

solution shown in Table 2., i.e., 0.239187 s
f

t  . 

 

 

  

 

 

 

 

Fig. 12. Trajectory and velocity of point A of the knife edge at 0fφ  corresponding to the First 

solution. 

 

  

 

 

 

 

 

Fig. 13. Trajectory and velocity of point A of the knife edge at 0fφ  corresponding to the 

Second solution. 
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5 Conclusions 

The paper presents a procedure for determining the global minimum time in the 

brachistochronic motion of the Chaplygin sleigh between two specified positions, 

with unchanged value of mechanical energy during motion. The formulated bra-

chistochrone problem is solved, for this case, as the simplest possible task of op-

timal control by applying Pontryagin’s Maximum Principle. Numerical procedure 

for solving the corresponding two-point boundary value problem is based on 

shooting method. The paper describes the assessment procedure for the values of 

unknown conjugate vector coordinates, so that the solution of obtained two-point 

boundary value problem is definitely situated within certain intervals. Graphic re-

presentation is given via corresponding surfaces in 3D space of the missing condi-

tions, of which each surface corresponds to the fulfillment of one end condition. A 

number of examples are provided for multiple solutions of the Maximum Prin-

ciple, of which global minimum is the one corresponding to the minimum time. 
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