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Abstract: 
  

The paper considers realization of the brachistochronic motion of a nonholonomic 
mechanical system, composed of variable mass particles, by means of an ideal holonomic 
constraint.  It is assumed that the system performs planar motion in an arbitrary field of forces 
and that it has two degrees of freedom. In addition, the laws of the time-rate of mass variation of 
the particles, as well as relative velocities of the expelled and gained particles, respectively, are 
known. The first time-derivative of quasi-velocity is taken as control variable. Applying 
Pontryagin's maximum principle and singular optimal control theory, the problem of 
brachistochronic motion is solved as a two-point boundary value problem (TPBVP). The 
considerations are illustrated via an example. 
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1. Formulation of the problem 
 

Consider planar motion of the mechanical system composed of N material points. Without 
loss of generality all material points can be of variable mass. The system configuration is defined 

by means of n generalized coordinates  1 2, ,...,
Tnq q qq , which are geometrically independent, 

and based on them the mechanical system position is unambiguously determined. In addition, the 
laws of the time-rate of mass variation of the material points can be considered to be known: 
 ( ), 1,..., ,l lm m t l N                 (1)  
where ( )lm t are continuous and differentiable functions of time. Mass variation can be realized by 
expelling or gaining of masses, assuming that the process of expelling and gaining of masses, 
respectively, is continuous over the considered interval of time. 

Relative velocities of expelling and gaining of masses, respectively, are considered to be 
known: 

 ( , , ),        1, , ,rel rel
l lv v t l N 
   q q                (2) 

where  1 2, ,...,
Tnq q q   q is the vector of generalized velocities. Also, the well known Einsten 

summation convention is deployed in the paper, where the indices have a range of values as 
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follows: , , , 1, , ;i j k r n  , , , 1, 2;    , 3, , .v n   Planar motion of the considered mechanical 
system is constrained by p ideal independent stationary nonholonomic homogeneous constraints 
of the form: 

   0v v v, q c q ,     q q                 (3) 

where  v vc c  q . Number p is taken in such way that the number of degrees of freedom of a 

mechanical system motion is m=n-p=2, and therefore p=n-2. At the same time, m=2 represents 

the number of kinematically independent coordinates q , which correspond to independent 

generalized velocities q  that can be expressed as a linear form of independent quasi-velocities 
βV  [1, 2]: 

 .q b V  
                  (4) 

If (3) and (4) are taken into account, dependent generalized velocities can be written as follows: 
 ,v vq b V 

                  (5) 

where vb c b 
   . The kinetic energy of a nonholonomic scleronomic mechanical system is a 

homogeneous quadratic form of independent quasi-velocities: [1, 2, 3, 4]: 

 * 1
,

2
Т G V V  

                 (6) 

where: 

   i j
ijG ,t a b b  q                 (7) 

and where G  are the covariant coordinates of metric tensor relative to kinematically 

independent coordinates q  taking into account independent quasi-velocities αV ,  ,ij ija a t q  

are the covariant coordinates of metric tensor of the function of generalized coordinates and time 

t,  i ib b  q are continuous functions with continuous first derivatives in the area of mechanical 

system considerations. It can be considered that the studied mechanical system is moving in a 
field of known potential forces, whose potential energy equals: 
 ( , ),t   q                  (8) 
and that the system is acted on by known arbitrary nonpotential forces, so that the generalized 
forces are: 

 ( , , ).w w
i iQ Q t q q                 (9) 

The differential equations of motion for the considered system, as a function of kinematically 
independent coordinates, are written in covariant form [1, 2, 3, 4]: 

 ,G V   
                 (10) 

where: 

 ( , , ) ,

j
ji k r

ij krk

b
t Q a b b b V V

q

 
    
  

   
    q V            (11) 

whereas the generalized forces corresponding to kinematically independent coordinates are 
represented as: 

  , , ,i
iQ t b Q

 q V               (12) 

where  1 2,
T

V VV , iQ  are covariants generalized forces corresponding to geometrically 

independent coordinates, j
kr are Christoffel symbols of the second kind. The generalized forces 
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corresponding to geometrically independent coordinates can be represented, in a general case, in 
the form as follows [5, 6]: 

 var( , , ) .w c
i i i i ii

Q t Q Q Q Q
q

     


q q            (13) 

The generalized reaction forces that develop due to expelling and gaining of masses, respectively, 
can be written as [5, 6]: 

 var

1

( , , ) ,
N

rel l
i l l i

l

r
Q t m v

q


 




 q q              (14) 

while at the same time ( , , )c c
i iQ Q t q q  are generalized control forces, whose total power during 

brachistochronic motion equals zero: 
 0,c i

iQ q                 (15) 
where, in accordance with (7) and (17) it can be written: 
 0.cQ V 

                (16) 
Since generalized forces due to imposed nonholonomic constraints (4) can be written in the form 
as follows: 

 ( , ) ,
v

i v i
Q

q

 
 







q q               (17) 

where v are Lagrange’s multipliers of the constraints, based on (3), (12) and (17), it can be 
shown that: 
   0.v v

v vQ b Q b Q b b c          
                  (18) 

Based on these equations, it can be concluded that Lagrange’s multipliers of the constraints do 
not occur in differential equations of motion (15), and hence the procedure of defining the 
reactions of nonholonomic constraints is completely separated from the procedure of defining the 

system motion. Multiplying both sides of the equation (10) by αV  and summing over an index α  
it is obtained: 

 1 2
1 2 .G V V G V V V     

                (19) 
The last relation enables to express one arbitrary second time-derivative of a quasi-coordinate as a 
function of the other one. Taking into account (16), in equations (19) the generalized control 
forces will not figure. Now, relation (19) can be expresed in the following form [3, 4]: 

 2 1
1 ,V V                   (20) 

where: 

 
2

( , , ) ,
V

t
G V


 







q V

 

1
1

2

( , , ) ,
G V

t
G V

  






q V            (21) 

where it is assumed that the expression 2G V
  which figures in the denominators of the relations 

(21) does not equal zero during the system motion. 
The question is posed on realizing the motion of the presented mechanical system. The answer is 
found in subsequently imposed ideal holonomic constraint. Since it is the mechanical system with 
kinematically independent generalized coordinates, the motion can be realized by the imposition 
of smooth guides to a single particle, whose motion is defined by previous numerical integration 
of differential equations. Without loss of generality, let it be point C of the system. This way, the 
brachistochronic motion is realized without active forces' influence, which is in accordance with 
the elementary brachistochrone problem of aparticle in a vertical plane. 
Let the values of generalized coordinates be specified, as well as the value of mechanical energy 
of the mechanical system at the initial instant of time: 
 0 0 00, ( ) ,t t q q               (22) 
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    *
0 0 0 0 0 0, , , ,Т t t E  q V q              (23) 

and also the values of generalized coordinates corresponding to the final position of the system: 

   ,f ft q q                (24) 

where E0 ∈ ℝ and tf ∈ ℝ. The problem of brachistochronic planar motion of a variable mass 
nonholonomic mechanical system, whose differential equations of motion are given in the form 
(10), consists of defining the generalized control forces ( )c c

i iQ Q t , and corresponding equations 
of the system motion ( )i iq q t , so that the system moves in the minimum time tf from the initial 
state defined by (22) and (23) to the final position defined by (24). 

 
2. Brachistochrone problem as an optimal control task 

The presented brachistochrone problem can be formulated as a task of optimal control by 
introducing scalar control u [3, 4]: 

 u= 1V ,                (25) 
The normal form of first-order differential equations, known in the optimal control theory as the 

state equations, can be written by incorporating the rheonomic coordinate 1nq t  in the following 
manner: 

 

1

1 1
1

1 1
(1)

2 1 1 1
(2) 1

( , , , ) ,

( , , , ) 1,

( , , , ) ,

( , , , ) ( , , ) ( , , ) .

i n i
i

n n
n

n

n n n

q f q u b V

q f q u

V f q u u

V f q u q q u



 




  

 

 

 

    









q V

q V

q V

q V q V q V

          (26) 

The brachistochrone problem of the considered nonholonomic system motion described by the 
state equations (26), consists of defining the optimal scalar control u and corresponding optimal 

trajectories in state space ( )iq t , so that the mechanical system moves from the initial state defined 
by (22) and (23) to the final position (24), in the minimum time, which can be expressed using 
conditions for the functional [7]: 

  1

0

, , , ,
ft

nJ q u dt  q V               (27) 

over the interval [0, tf] it has minimum value. In order to solve the problem of optimal control by 
applying Pontryagin’s maximum principle [8], the Hamiltonian is created of the Hamilton-
Pontryagin form: 
  1

1 1 2 1, , , , , 1 ( ),n j
j nH q u b V u u

        
   q V λ ν          (28) 

where  1 2 1, ,...,
T

n   λ ,  1 2, T  ν , whereas    1: 0, ,  : 0,i f n ft t             

and   : 0, ft     are costate variables, so that the costate system of differential equations has 

the form: 

 

1
2

1
1 21 1 1 1

1
2

,

,

.

j

i ji i i i

j

n jn n n n

j
j

bH
V u

q q q q

bH
V u

q q q q

H
b u

V V V

    

   
           

   
           

  
      

   











   

  

  

  

          (29) 

Based on (28), it can be written: 
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  1
0 1, , , , , ,nH q и H H u  q V λ ν              (30) 

where: 

 0 1 2

1 1 2 1

1 ,

.

j
j nH c V

H

     

  


  

 
             (31) 

For the case of control known in the optimal control theory as a singular control, where control 
figures linearly in the state equations, the necessary optimality condition of Pontryagin’s 
maximum principle is of the form as follows [9]: 

 1 0,
H

H
u


 


               (32) 

from where singular optimal control u cannot be explicitly defined. Hence, it is required that Н1 

be identically equal to zero alongside the optimal trajectory of state. Singular optimal control u is 
defined by further differentiation with respect to time (32) taking into account (26) and (29): 

 0, 0,1, 2,...
k

k
d H

k
udt

 
 
 

  


             (33) 

In defining the relations (33) the Poisson bracket formalism will be applied [10]: 

      1 1 1 0 1 1, , , 0.H H H H H H H u                (34) 

Taking into account (42), as well as that  1 1, 0H H   [10], it is obtained: 

  
3

0 01 1
1 0

1

, 0,
n H HH H

H H
y y





   
        
    
  

            (35) 

where 
1 2 3 1 2 1 1 2( , , , ) ( , , , , , )n T n Ty y y q q q V V    y  and 

1 2 3
1 2 1 1 2( , , , ) ( , , , , , , )

n T T
n


           . 

Further differentiation (35) yields: 

      1 0 1 00 1, , 0., ,H H H H uH H              (36) 

From where singular control can be expressed as: 

 
  
  

1 0

1 0

0

1

,
.

,

,

,

H H
u

H H

H

H
                (37) 

Furthermore, the transversality conditions can be represented in the form as follows: 

  1
1

0
0,

ft
i n

i nq q V
     

               (38) 

  
0

0,ft
H t                 (39) 

where   
 is asynchronous variation [1, 2] of the quantity   . Based on condition (32), the 

costate variable 1  can be expressed as a function of the costate variable 2 : 
 1 2 1.                   (40) 
Now, from equations (35), taking into account (31) and (40),one can express: 
 1

1 1 2 3 2( , , , , , ..., , ).n
nq      q V             (41) 

Since the initial position of the mechanical system according to (22) is defined, it follows: 

 
1

0 0 0( ) 0, ( ) 0 , ( ) 0.
i n

t t q t q t
                  (42) 

If (42) is taken into account and the operator of asynchronous variation is applied to (23), it can 
be obtained: 

 0 0 0( ) ( ) ( ) 0,G t V t V t  
               (43) 

and lastly, after substituting (40) and (42) into (38),it is obtained: 

 0 0 2 0 0 0 0( ) ( ) ( ) ( ) ( ) ( ) 0.t V t t G t V t V t     
              (44) 
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Based on (42), (43) and (44), it is obvious that the transversality conditions (38) and (39) in the 
initial configuration of the system are satisfied. In the final configuration (24) of the mechanical 
system the time is not known, and based on it, the transversality condition results from (39): 
   0,fH t                 (45) 

аnd as quantities ( )fV t  and 1( )n
fq t  are not a priori defined ( 1( ) 0, ( ) 0n

f fV t q t     ), the 

next transversality conditions are obtained from (38): 
 1( ) 0, ( ) 0.f n ft t                  (46) 

Based on (28), (41), (45) and (46), the following dependence can be established in analytical 
form: 

 1
, 1,( ) ( ( ), ( ), ( )),n

е f е f f i i i e ft t q t t
  V               (47) 

where 1 2( ) ( ( ), ( ))Tf f ft V t V tV  and 1( )n
f fq t t  . 

If considerations are restricted to the first order singular controls, where   1 0 1, 0,H H H  , 

using (40) and (41), singular scalar control singu  from (37) can be represented in the form as 

follows:  
 1

2 3 2( , , , , ,..., , ).n
sing sing nu u q     q V            (48) 

Also, the Kelley necessary condition for the first order singular control is given in the form [9]: 

 
2

2
0

d H

u udt

          
              (49) 

Applying the Poisson brackets, this condition is reduced to: 
   1 0 1, , 0H HК H                (50) 

Substituting (48) into (26) and (29) yields a two-point boundary value problem (ТРВVP) with 
2n+3 first-order nonlinear normal form differential equations. Due to nonlinearity, in a general 
case, it is necessary to apply the appropriate numerical method [11]. In this paper, the shooting 
method will be deployed. The shooting method is most suitable to perform in this case by the 

backward numerical integration choosing the (n+1) values , 1, ( ), ( ), ,i i i e f f ft V t t 


 
which will 

ensure fulfillment of the same number of initial conditions (22) and (23). The value 1( )ft
 
was 

defined via (41) for t=tf, and ( )e ft
 
from the expression (47). 

Numerical solution of the problem can be performed applying a software package Wolfram 
Mathematica [12] in two steps. In step 1 numerical relations are established in the form of the 
system of differential equations with unknown values that are chosen. In establishing these 
relations the functions NDSolve[] and First[] are employed. In step 2 unknown boundary values 
are defined by applying the function FindRoot[]. After the appropriate boundary values are 
defined, the system of differential equations is solved by applying the function NDSolve[]. Thus, 
the given problem is solved and will be presented using an example. 
 
4. Numerical example 

The example shows a nonholonomic mechanical system composed of two variable mass 
material points А and В with an imposed constraint of motion in the form of perpendicularity of 
the velocities by means of Chaplygin blades of negligible masses, as indicated by Fig. 1. In step 
1, for the needs of further considerations, two Cartesian coordinate reference systems must be 
introduced. The first, a stationary coordinate system Oxyz, whose coordinate plane Oxy coincides 
with the horizontal plane of motion, and the second, a non-stationary coordinate system Вξηζ, 
whose coordinate origin is attached to point В of the system, the coordinate plane Вξη coinciding 
with the plane Oxy. In addidtion, the axis of the non-stationary coordinate system Вξ is defined by 
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the direction ВА, that is, АВξ. Unit vectors of the non-stationary coordinate system axes are 
,λ μ
 

 and ν


, respectively. Variable-mass material points А and В are interconnected by a 
lightweight mechanism of the ‘pitchfork’ type, which allows the distance between the points to 
change, i.e. constBА ξ .   

 

 
Figure 1. Variable mass nonholonomic mechanical system. 

 
The configuration of the considered system is defined by a set of Lagrangian coordinates 

 1 2 3 4, , ,
T

q q q qq , where 1q x  and 2q y  are Cartesian coordinates of the point В, 
3q φ  is 

the angle between the axes Оx and Bξ and 
4q ξ  is the relative coordinate of the point А relative 

to the non-stationary coordinate system. 
Changes in masses of the points А and В are specified in the following form: 

 
 

 
0

0

,

,

A

B

k t
A

k t
B

m t m e

m t m e








               (51) 

where m0 is mass of the points А and В at the initial instant of time, аnd kA and kB are defined 
positive constants. Without loss of generality, the magnitudes of relative velocities of the 
particles’ expelling from the points А and В are constant and mutually equal: 

 
rel rel
A B rv v v ,                 (52) 

where vr is a defined positive constant, аnd 
rel
Av vrλ 
 

 and 
rel
Вv vr μ
 

. According to the 
restriction of motion of the points A and B, аnd in accordance with (3), nonholonomic 
homogeneous constraints can be written in the following manner: 

 
3 1 3 2 3

4 1 3 2 3 4 3

γ cos( ) sin( ) 0

γ sin( ) cos( ) 0

q q q q = ,

q q q q +q q = .

 

  

 

  
            (53) 

For independent quasi-velocities, the velocities of the points A and B are taken: 

 
1 4

2 1 3 2 3sin( ) cos( )

A

B

V V q ,

V V q q q q .

 

  



 
             (54) 

Now, according to (4), (5), (53) and (54), all generalized velocities can be expressed via 
independent quasi-velocities: 

 

1 3 2

2 3 2

3 2
4

4 1

sin( ) ,

cos( )

1
,

.

q q V

q q V ,

q V
q

q V



 













              (55) 
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The kinetic energy of the system, according to (6), is written in the following form: 

  * 2 21
.

2 A A B BT m V m V                (56) 

At point С of the system, an ideal holonomic stationary constraint is imposed in the form of 
smooth guides, so control was accomplished without active control forces by means of the 
constraint reaction CR


, whose components are  1 1F F t


  and  2 2F F t

   realizing the 

constraint in such way that the condition 0C CR v 
  , i.e. 1 2

1 2 4
0

AC
FV F V

q
   is satisfied during 

brachistochronic motion. Accordingly, the line of the guide path coincides with with the line of 
the point C path, positioned in the АВ direction, and therefore the parametric equations of the 
guide line are specified in the form as follows: 

 
   
   

1 4 3

2 4 3

cos( ),

sin( ).

C

C

x t q q АC q

y t q q АC q

  

  
             (57) 

Now, based on (10), (13), (14), (18), (54) and (55), differential equations of motion of the system 
can be constructed: 

 

1
1

2
2 4

,

.

A A A r

B B B r

m V k m v F

AC
m V k m v F

q

 

 



              (58) 

Also, based on (11), (21) and (58), relations   and 1  are of the form: 

 

1

1 2

1

2

Θ ,

Θ ,

A

B

A
A r B r

B

m V

m V

m V
k v k v

m V

 

 

              (59) 

therefore, according to (20), 2V  can be expressed in the following form: 

 
1 1

2 1
2 2

.A A
A r B r

B B

m mV V
V k v k v V

m mV V
                (60) 

Afterwards, a rheonomic coordinate can be introduced and (28) and (29) can be defined applying 
(55) and (60), as well as all other needed quantities so as to solve the formulated problem. 

For initial and end conditions (22), (23) and (24) it is taken: 

  
1 2 3 4

0 0 0 0 0

* 2 2
0 0 0 0 0 0 0

1 2 3 4

0, ( ) 0, ( ) 0, ( ) 0, ( ) ,

1
( ) Π( ) ( ) ( ) ( ) ( ) ,

2

( ) 2 , ( ) 1.5 , ( ) 2, ( ) 3 .

A A B B

f f f f

t q t q t q t q t а

T t t m t V t m t V t E

q t a q t a q t π q t а

    

   

    

          (61) 

Using the numerical procedure described in the preceding Section, the solution of the problem 
was found for the following parameters: 

 
2

0 02

kgm 1 1 m
80 , 1m, 0.35 , 0.25 , 1 , 50kg, 1 / 3 .

s s ss
A B rE a k k v m AC m              (62) 

The numerical procedure gives solutions for the system of differential equations of motion, as 
well as for the costate system in numerical form: 

 
1 2 3 4 1 2

1 2 3 4 1 2( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ),q t q t q t q t V t V t t t t t t t              (63) 
and the time of brachistochronic motion tf,. Figure 2 shows trajectories of the points А, B and C. 
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Figure 3 shows graphic representation of the values of velocities V1 and V2. Figure 4 displays 
graphs of control forces F1 and F2. The control forces F1 and F2 can be expressed in the following 
form: 

    
4 1

1 2 2
, .A A r A A r

q V
F m u k F m u k

ACV
                (64) 

 
 

 
Figure 2. Graphs of the trajectories of the points A, B and C. 

 

 
Figure 3. Graphs of the velocities V1 and V2. 

 

 
Figure 4. Graphs of control forces F1 and F2. 

 
Figure 5 gives a graphic representation of the control u(t). Since control in this example is the 
first order singular control, it is needed to satisfy Kelley’s optimality condition (50). Figure 6 
presents the law of change in the function К, which indicates the fulfillment of Kelley’s 
optimality condition. 
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                          Figure 5. Graph of control u(t).       Figure 6. Evidence of Kelley’s optimality condition. 

 
3. Conclusions 

 
The present work has solved the problem of realizing brachistochronic planar motion of a 

nonholonomic variable mass mechanical system by means of an ideal holonomic constraint. 
Considerations presented in this work rely on the papers [3] and [13] and thus are a kind of 
continuation of mentioned studies. The considered system has two degrees of freedom so that the 
motion can be realized by means of a single ideal holonomic constraint. The first time-derivative 
of quasi-velocity is taken as control variable. The brachistochrone problem is formulated as an 
optimal control task. Further research will go towards limiting constraint reaction, whereby non-
singular controls occur. 
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