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This paper deals with eigenfrequencies of distributed-parameter system within the form of gantry-like structure with 

cantilever part. The individual members of the structure-framework are assumed to be governed by the transverse vibration 
theory of Euler-Bernoulli beam. It is obtained postulation of frequency equation while solutions are obtained numerically 
with in-house software, for several cases of structures. Also, it is done finite element postulation of the gantry-like structure 
as discrete-parameter system for analyzing the free undamped vibrations. Thus, it stands for two folded presentation. It is 
done verification of postulated algorithms. 
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1. INTRODUCTION 

Structural dynamics is always needed when 
complete behaviour of structure has to be analyzed. It is 
very important for design of bridges, buildings and high-
performance cranes. Nowadays, we have a permanent 
tendency towards constant improvement of performances 
of machines and systems in general, including their 
increase in size [1]. However, the mass and the stiffness of 
the structure are not always in suitable proportion which 
requires good understanding of structural dynamic 
characteristics. 

The orientation here is towards gantry-like 
structures as at gantry cranes. Especially, this group of 
cranes are important for container terminals because of 
importance of container transportation in world economy.  

 
Figure 1: Rail mounted gantry crane at container terminal 

From the main producers of the container RMG 
cranes (Konecranes, Liebherr, Kuenz) one can found the 
current level of main performances, Table 1. 

Table 1: RMG container crane performances 
Span 22...70 m 

Cantilever up to 21 m 
Height up to 28 m 

Capacity up to 50 t 
 
The first step in structural dynamic is always modal 

analysis. Approximate expressions for fundamental 
symmetric and antisymmetric frequencies of symmetric 

portal frame can be obtained buy the Reyleigh method [2], 
useful for simplifying the vibration formulation of beams. 
Laura, Filipich [3] dealt with the determination of the 
fundamental frequency in the case of antisymmetric modes 
of a frame elastically restrained against translation and 
rotation, carrying concentrated masses. Blevins [4] 
presented formulas for determination of fundamental 
frequencies for symmetric portal frame, for first symmetric 
and first antisymmetric mode, according to frequency 
equation presented with trigonometric-hyperbolic 
functions. Furthermore, frequencies of non-regular frames 
were investigated by Bolotin, Kiselev [5,6], with slope-
deflection method. But, even that process of gaining 
frequency equation was defined, finding solutions were 
difficult because of its transcendental nature involving 
trigonometric and hyperbolic functions. Nowadays, state-
of-the-art computer routines enable solution of frequency 
equation of in-plane vibrations of structural system of 
portal crane i.e. non-regular frame. Such routine is given 
here symbolically with software Mathematica, Wolfram. 
Also, nowadays, modal analysis with commercial FEM 
software are widely used for determination of frequencies 
of various structures [7]. The most common structural 
dynamics problems include vibration excitation, blast and 
shock, wind and earthquake loads. In vibration excitation 
analysis one is primarily concerned with avoiding 
resonance, usually at a few frequencies. In this case, modal 
analysis is generally used to calculate a small number of 
eigenfrequencies, e.g. vibrations of machine parts and 
machine foundations. 

This paper deals with analysis of in-plane 
vibrations of the structural system of gantry-like structures 
with cantilever part, which is improvement of the model 
given in [8]. First, it is obtained frequency equation for 
distributed-parameter system of the structure and then the 
eigenfrequencies and mode shapes with finite element 
model in basic form. Solutions are verified against each 
other.  

2. MATHEMATICAL MODEL 
The main structural parts of gantry-like structure 

are main girder, pier leg and shear leg. The main girder 
has span part of length L and cantilever part with length 
Lp. The different heights for legs, H,h, are used solely for 
generalization of the framework, despite the fact that in 
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almost all the cases legs of the gantry cranes are mounted 
on the same level. The geometric set of this postulation is 
given on Figure 2a. 

Presented model is the planar framework which 
assumes that main structural parts are beams having 
uniform properties along their lengths. For other types of 
structures it can be applied with proper idealization of 
elements. The individual members of the frame, Figure 2, 
are assumed to be governed by the transverse vibration 
theory of an Euler-Bernoulli beam. Neglecting the axial 
and shear deformation and rotatory inertia effects can be 
done because of known structural behaviour of gantry 
cranes. Individual elements are made of same material 
(steel). 

 
Figure 2: Mathematical model of gantry-like structure as 

distributed-parameter system 
The partial differential equation for free transverse 

undamped vibrations of each element has the following 
form 

 
2 4

2 4 0   ( 1, 2,3, 4)i i i
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∂ ∂

+ = =
∂ ∂

 (1) 

with postulation as 
 1 1 1 1 1 1( , ) ( ) ( )   0v v z t Z z T t z L= = ⋅ ≤ ≤  (2) 
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where Ai represent section area, Ii is moment of inertia, ρ is 
density and E is Young's modulus. 

The mode shapes are presented throughout Krylov 
functions  
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The time function is presented as 
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where circular frequency is 
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One can formulate the boundary conditions for the 
model under study as following. 

The pinned joint at element 2 gives 
 2 (0) 0Z =  (9a) 

 ''
2 2 (0) 0EI Z− =  (9b) 

The pinned joint at element 3 gives 
 3 ( ) 0Z h =  (9c) 

 ''
3 3 ( ) 0EI Z h− =  (9d) 

 Free end of element 4 gives 
 ''

4 4 (0) 0EI Z− =  (9e) 

 '''
4 4 (0) 0EI Z− =  (9f) 

The joints of elements 1 and 3, along with joints of 
element 1, 2 and 4 give following 
 1( ) 0Z L =  (9g) 

 ' '
1 3( ) (0)Z L Z=  (9h) 

 '' ''
1 1 3 3( ) (0)EI Z L EI Z− = −  (9j) 

 1(0) 0Z =  (9k) 
 4 ( ) 0pZ L =  (9l) 

 ' '
2 1( ) (0)Z H Z=  (9m) 

 ' '
4 1( ) (0)pZ L Z=  (9n) 

 '' '' ''
1 1 2 2 4 4(0) ( ) ( )pEI Z EI Z H EI Z L− = − −  (9o) 

 2 3( ) (0)Z H Z= −  (9p) 
Finally, most important condition is equilibrium of 

shear forces at the top of the legs with inertial force 
developed in the main girders elements by sideway motion 
which provides the condition 

''' '''
1 4 3 2 2 3 3( ) (0, ) ( , ) (0, )pA L A L v t EI v H t EI v tρ ρ− + = +  (9r) 

which becomes 
2 ''' '''

1 4 3 2 2 3 3( ) (0) ( ) (0)pA L A L Z EI Z H EI Zρ ρ ω+ = +  (10) 
Afterwards, one may obtain a set of 16 

homogenous system of equations with unknown 
guantities, Gi, Bi, Ci, Di (i=1,2,3,4) and non-trivial solution 
of determinant of coefficients must be equal to zero. 

From (8) one may express frequency parameters of 
every element with 

 141
1

i
i

i

A I
k k

A I
=  (11) 

and set up the postulation of frequency equation which is 
very complex because of combination of special functions 
and numerous parameters such as A1, A2, I1, L, H ....  

The form as 
 1( ) 0f k =  (12) 
don't allows analytical solution but only numerical one. 
Here, it is solved with state-of-the-art software 
Mathematica. Upon the finding the solutions for k1 one 
may calculate the frequencies with (8) and 

 
2

f ω
π
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2.1. Numerical results 
It is determined first 3 frequencies for the adopted 

cases of gantry-like structures. Main geometric parameters 
are set with L and H, while it is assumed that Lp=0,25 L 
and that H=h. Due to the fact that design of main girder is 
first step in design of a crane, the static characteristics of 
main girder are used as start point. They are determined 
with design recommendations for flexible and rigid case. 
The cantilever part is the same as span part of main girder.  

 
The variation of parameters are given with 

following expressions 

 1 1 1 1

2 3 2 3
, , ,I I A A

I I A A
α β γ δ= = = =  (14) 

 
The results are given in Table 2. 
 

 Table 2. First 3 frequencies of the adopted gantry-like structures 
L = 30 m 

H = 18 m 

I1= 0.024 m4 

A1= 0.07 m2 

I1= 0.05 m4 

A1= 0.09 m2 

α γ β δ f1 [Hz] f2 [Hz] f3 [Hz] f1 [Hz] f2 [Hz] f3 [Hz] 

1 1 1 1 1.57 7.58 15.69 2.00 9.65 19.97 

1 1 10 2 1.12 6.49 10.34 1.43 8.27 13.16 

10 2 10 2 0.69 5.25 10.11 0.88 6.68 12.87 

10 2 50 4 0.54 5.09 6.64 0.68 6.48 8.45 

 

L = 40 m 

H = 20 m 

I1= 0.05 m4 

A1= 0.09 m2 

I1= 0.13 m4 

A1= 0.11 m2 

α γ β δ f1 [Hz] f2 [Hz] f3 [Hz] f1[Hz] f2 [Hz] f3 [Hz] 

1 1 1 1 1.45 5.76 12.57 2.12 8.41 18.34 

1 1 10 2 1.03 4.92 10.26 1.50 7.18 14.96 

10 2 10 2 0.65 3.90 9.67 0.95 5.70 14.10 

10 2 50 4 0.51 3.77 6.70 0.74 5.51 9.81 

 

L = 45 m 

H = 18 m 

I1= 0.07 m4 

A1= 0.1 m2 

I1= 0.18 m4 

A1= 0.14 m2 

α γ β δ f1 [Hz] f2 [Hz] f3 [Hz] f1 [Hz] f2 [Hz] f3[Hz] 

1 1 1 1 1.74 5.40 12.08 2.36 7.34 16.38 

1 1 10 2 1.23 4.61 11.52 1.67 6.25 15.67 

10 2 10 2 0.81 3.58 9.86 1.13 4.88 13.66 

10 2 50 4 0.63 3.44 9.11 0.85 4.66 12.34 

 

3. FINITE ELEMENT MODEL 
The previous chapter offers free vibrations of the 

gantry-like structure as distributed-parameter system. Even 
that results are the closest to the exact solutions, one may 
respect the fact that discrete-parameter system analysis is 
widely accepted approach for this kind of problems [9]. It 
is especially needed for structures with complex form 
which can't be easily simplified to SDOF system or beam 
models. The gantry-like structures as in this paper are the 
end form for consideration with distributed-parameter 
system. Any additional structural parts would demand 
discrete-parameter analysis. 

Here, the discrete model of the gantry-like structure 
is shown at Figure 3, with same geometric set as previous.   

 
Figure 3: Discrete-parameter system of gantry-like 

structure 
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The main girder is divided into the 10 elements and 
legs into 2 elements, each. This can be described as 
enough level of discretization. 

It is used the finite element method, in basic form, 
for postulation of the discrete-parameter system. The FE 
model is shown in Figure 4 and is consisted of 15 nodes 
and 14 elements. The length of elements (ln) are the same 
for same construction part. 

Figure 4: FE model of the gantry-like structure 
Every node has 3 DOF's, horizontal displacement, 

vertical displacement and planar rotation. This is starting 
postulation for creating property matrices. 

Figure 5: Nodal displacements 
The restrained translations of pinned joints are not 

included in postulation of problems of any kind.  
Thus, vector of structural displacements becomes 

1 1 1 12 13 14 15{ ... ... }T
X YU U U U U U Uθ θ θ θ θ=U  (15) 
The discretization of the framework (Fig. 4) is done 

by using FEM, with plane-frame elements [10].  

Figure 6: The local and global system of plane-frame 
element 

This postulation gives following matrices, stiffness 
and mass matrix, respectively, in element local coordinate 
system. 

The element stiffness matrix can be obtained by 

3 2 3 2
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The element mass matrix is 

2 2
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The transformation matrix to global coordinate 
system is 

cos sin 0 0 0 0
sin cos 0 0 0 0

0 0 1 0 0 0
0 0 0 cos sin 0
0 0 0 sin cos 0
0 0 0 0 0 1

n n

n n

n
n n

n n
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3.1. Overall stiffness matrix 
The global stiffness matrices for the main girder 

elements are the same as local stiffness matrices, while leg 
elements are obtained with transformation matrix for angle 
of 3π/2, which give 

n n=K k , n=1-10 (16)
T

n n n n=K T k T , n=11-14 (17)
Adjustment with all the DOF's and with 

combination of element stiffness matrices give [11] 
14

45 45 1
[ ]st x nK = K  (18)

Overall stiffness matrix of the structure, which 
includes only free structural displacements, is now 
obtained with  

41 41[ ]st st xK=K (19)

3.2. Overall mass matrix 
Similarly, the global mass matrices of elements are 

obtained as 
n n=M m , n=1-10 (20)

T
n n n n=M T m T , n=11-14 (21)

Adjustment with all the DOF's give 
14

45 45 1
[ ]st x n=M M (22)

Overall mass matrix of the structure becomes 
41 41[ ]st st x=M M (23)
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3.3. Free undamped vibrations 
The governing equation of the free undamped 

vibration of the MDOF system is known as [12] 
 0st st+ =M U K U  (24) 

where ,U U are acceleration and displacement vectors of 
the system, respectively. 

Frequency equation becomes 
 2 0st stω− =K M  (25) 

which gives a set of 41 circular frequencies for the system, 
while frequency is calculated as 

 
2

i
if

ω
π

=  (26) 

The given algorithm is also programmed in 
software Mathematica. 

4. VERIFICATION 
Verification of the given algorithm is done with 

finite element model in correlation with mathematical 
model with distributed-parameter system.  

The adopted FE model has following 
characteristics: L=30 m, H=18 m, I1=0,024 m4, A1=0,07 
m2 and other characteristics are done to comply with (14), 
following  1α = , 10β = , 1γ =  and 2δ = . It is obtained 
frequencies of f1=1,122 Hz, f2=6,45 Hz, f3=10,386 Hz, 
f4=15,43 Hz ... 

For this case on can found only slight differences 
from the suitable case from Table 2. 

Figure 7 shows the first 2 mode shapes of this 
structure. 

 
a) 

 
b) 

Figure 7: a) 1st mode shape, f1=1,12 Hz,                                 
b) 2nd mode shape, f2=6,45 Hz 

The character of mode shapes from Figure 7 
describe the typical behaviour of gantry-like structure 
where 1st mode represent sideway motion of the structure 
and 2nd mode represent bending of the main girder and 
legs.  

5. CONCLUSION 
The paper is dealing with modal analysis of gantry-

like structures. First part is devoted to modelling of these 
structures as distributed-parameter systems. It is obtained 
frequency equation for free vibrations and solution is 
obtained with numerical software for several cases. 

The main advantages of this approach are: 
• the results are closest to exact solutions of 

eigenfrequencies 
• it is easy to track the influence of any 

structural parameter on natural and other 
frequencies of the structure 

The biggest drawback is cumbersome mathematical 
expressions with special functions and graphically oriented 
tracking of solutions, but this should be the cost for 
gaining the exact solutions. Consideration of only 
transversal vibrations is quite suitable approximation for 
this kind of structures. 

The second part deals with title problem with finite 
element method in basic form. With plane frame elements 
one can set the model of the framework as discrete-
parameter MDOF system. The modal analysis is 
performed with basic matrix algebra. 

The main advantages are: 
• simple mathematical apparatus is needed to 

postulate the problem 
• this approach is practically unavoidable when 

response of structures due to general dynamic 
loading is needed 

• it is more flexible to the changes of 
framework element characteristics  

The basic drawback is that the influence of some 
structural parameter is not so visible on eigenfrequencies 
analysis and require more detailed consideration. 

Authors deliberately didn't show the modal analysis 
with commercial FEM software. The 2 mentioned 
concepts in this work serve as starting point of analysis of 
dynamic behaviour of gantry-like structure as well for 
validation of modal analysis results performed with 
commercial FEM.   
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