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~/AUTOMATED SETTING OF DIFFERENTIAL EQUATIONS OF MOTION IN
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1. INTRODUCTION

The growing complexity of dynamic models of many technical objects (¢.g. manipulutors) has imposed
a great need for automated setting of mathematical models consisting of differential cquations of motion.
It is obvious that for such purpose sophisticated computer equipment together with the latest software
products has to be used. Methods and procedures for automatic construction of differential cquations
of motion are objects of team-work exploration. An extensive report on several computer programs
dealing with this problem is given in monograph [1]. It can be seen that almost all included programs
had different approach to theoretical definition of the problem. System structure, allowed types of
kinematic joints, programming language and forms of differential equations (symbolic. numcrical or
combined) were also ditterent. In monographs [2] and [3] some further reterences can be found.

In this paper systems of rigid bodies in the form of an open kinematic chain without any branching and
with kinematic joints of the [ifth class (or with those that can be reduced to such type) will be considered.
The purpose of this paper is to demonstrate a procedure for automated setting of differential equations
of motion in analytic form by means of personal computer. Such procedure will be performed only once
and so obtained expressions, automatically simplified, give the opportunity for the fastest possible
calculation of all quantities included in the mathematical model. This is a tremendous advantage over
numerical form of differential equations where, for each new system configuration, extensive and tedious
numerical piece of work has 10 be repeated. The last, but not less important, automated setting of
equations of motion eliminates almost inevitable human errors when these equations are set "manually”.

All results presented in this paper are based upon results obtained at Mechanical Department of
Mechanical Engineering Faculty in Belgrade [4, 5, 6, 7, 8 |. The primary task of explorations mentioned
above was to introduce methods of analytical mechanics into dynamics of systems of rigid bodies with
applications in respective applied disciplines (e.g. robotics). It is shown in [6], among the other things.
that starting from different theoretical aspects (Lagrange’s equation of the second kind. general
theorems of dynamic, d’Alembert’s principle, Appcell’s equations ete.) identical covariant form of
equations of motion will be obtained. This procedure will be explained in Chapter 2 together with
contravariant form of equations of motion (this form of equations of motion is necessary for some
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problems, c.g. for the inverse task of dynamics). All expressions are written in tensor | 10] and matrix
notation.

Powerlul computer systems, cheap enough 1o be used by any engineer, and development of new
generation problem-oriented program languages have immensely reduced the amount of programmer’s
cllort to write portable and highly ctficicnt programs. The possibilities of MATHEMATICA software
package [9] with respect to our problem are described in Chapter 3. Let us mention here that possibilities
ol symbolic addition. multiplication, derivation and automatic simplification ciiminate any further
analyses of expressions for ayj , [y & ete.

An original and general computer program dealing with problem described above is presented in
Chapter 4. On input. program requires necessary parameters describing the system ol rigid bodies and,
on output, it gives simplified analytical expressions for respeotive quantitics in cquations ol motion.

This program is tested in Chapter S on the example of manipulator with five degiees of freedom (the
samie examnple as o monograph [1]).

2. COVARIANT AND CONTRAVARIANT FORM OF EQUATIONS OF MOTION OF A
SYSTEM OF RIGID BODIES IN THE FORM OF AN OPEN KINEMATIC CHAIN

An example of a system ol rigid bodies in the torm of an open kinematic chain without branching and
with kinematic joints of the lifth class is shown in Figure 1. The type of joint beiween the i-th body and
the precceding one is represented by (7)) where 1(/)=0 in the case of a cylindrical jointand (()=1 in
the case of translation. Geometry of the system has been defined by unit vectors & as well as vectors
pi andpy expressed in local coordinate systems connected with bodies. For entire determination of this
mechanical system in the matter of dynamics, it is necessary to specify masses 71 und tensors ol inertia
Jc; expressed in local coordinate systems.

Figure 1: Systern of bodies in the form of an open chain
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Configuration of the system presented above is determined by nindependent generalized coordinates
¢". Let us suppose that the lixed coordinate system and the local coordinate systems have their
corresponding axes parallel (i.c. all generalized coordinates wie cqual o zcro) in reference position,
with axes Og; oriented upwards. Transtormations of coordinates o an arbitrary vector @ expressed in
the local coordinate system ol the i-th body ({u“)} L written in the matrix notation) are given by the
following relation:

{a®} = [4i ] {aV} ()

where [4;;] is the matrix of transtormation of coordinates between coordinate systems of the i-th and
the j-th body. These matrices characterize orthogonal transtormations of rotations and have a significant
property- the inverse matrix can be casily computed by means of matrix transposition. Transtormation
matrices are obtained from Rodrigues’ formula [S] (i0(1)=0 ):

Ai—ni) =[]+ (1=cosq") [ 4 sing ' (e 2)
where
" 0 —Cui Cay
[e h (’)] =| ¢« 0 —tu 3)
—Cqn ¢ 0

In the case of translation [A j=1.,] = [/]. where [/] s the identity matrix. The remaining matrices of
translormation can be evaluated from the next recursive relation:

[A/.H»l] = [,4/.1][-4:_:+|] (4)
It is shown in [6] that whatever theoretical approach we choose. the equations ol motion will be always

expressed in the same covariant form:

agq? + TPy’ = - ‘—'qu +0Ngh gy epyi=l..n )

where acg(g ') are the covariant coordinates of the basic metric tensor of the configuration space Rn,
T(¢") is the potential energy of the system in the ficld of Earth’s gravity. Q> are generalized forces
relating to other sources and Tg....(¢") are Christoftel’s symbols of the first kind that can be calculated
from the following relation:

_ 1 (dagu | dape  dagy
Iy« = =+ - 6
Bra =73 ( o a 2 ) (6)

. ) " e i e all
To construct differential equations of motion in a symbolic form, it is necessary to express aaf, —
9q

and I'g,« in terms of generalized coordinates by means of computer using, on input, quantities and
parameters that define the structure, geometry and inertial properties. Quantities aqg and Iugy are
symmetric with respect to indices a, 8. This fact drastically reduces the whole procedure and the amount
of our work. From this point on, we will assume that a<f .

CTAM Vol. 1, 1992 37

In the present paper the results of [4, 5, 6, 7, 8] will be used for evaluation of @ « and i'% :

[

aaﬂ=§ﬂ (mi (TSQYATERD 1+ (1 —1(@) (1=1B) e} T ef))

o _ <
F=g_2 mi (00 1) {TQ)}, g=9.8lsﬂ2 )
=a

Vectors Tq(j) can be written in the form of:

(T} = (@) {57} + (1-1(@)) [4“) (RE)) ™)
where:
] i
{RED) = Ha,d (o) + 3 [Aa, ] ({of) + 100 ¢ {e)) o
k=a
For some special problems and purposes (e.g. the inverse task of dynamics) it might be necessary 1o

transform equations (5) into the contravariant form:

s .B.y_ af aIl N =
q +I§y‘1 q' =a (—7+Qp) ap.y=1..n (10
9
where the contravariant coordinates a®? of the basic metric tensor and Christottel’s symbols ot the
second kind l";iy can be obtained from the following relations [10]: »
I, = a® Iy
(] = [acp) ™! ; (1

3. THE APPLICATION OF MATHEMATICA SOFTWARE PACKAGE IN SETTING Of
EQUATIONS OF MOTION

The purpose of this paper is to create a computer program capable of generating ditferential equations
of motion in a symbolic form. As a suitable programming language we have chosen MATHEMATIC 4
software package and its built-in command interpreter.

MATHEMATICA represents a synthesis of several different kinds of software: interactive numerical
languages such as BASIC, interactive numerical systems such as MacSyma, Reduce and SMP, interpreted
graphics languages such as PostScript, numerical and symbolic list manipulation languages such as APL
and LISP, and structured programming languages such as C and Pascal.
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MATHEMATICA is a general system for doing mathematical computation. There are three ditferent
main types of computation that MATHEMATICA can do: numerical, symbolic and graphical in various
combinations. In numerical computations MATHEMATICA goes far beyond a standard calculator: it
can calculate with numbers of arbitrary precision or evaluate a wide range of mathematical functions,
including all "standard" special functions. Furthermore, the ability to deal with symbolic formulae, as
well as numbers, is one of the most powerful [eatures of MATHEMATICA. It can get symbolic results
for many kinds of matrix operations and can also do calculus. It can eviluate derivatives and many
complex integrals symbolically. It can also derive power scries approximations. MATHEMATICA can
be used to make two- or three- dimensional graphics in a quite realistic form, including shading, color
and lighting effects.

Finally, there are two more general features of great importance for us. First, MATHEMATICA is a
system for representing mathematical knowledge. Fundamental to much of MATHEMATICA is the
notion of "transformation rules' which specily how expressions of one form shoud be transformed into
expressions of another form. MATHEMATICA has a very basic set of algebraic rules but there is no
limit in specifying an arbitrary number of new ones. And the sceond, it is possible Lo write programs in

MATHEMATICA using its built-in interpreter. Programs can be run as soon as we type them in.

MATHEMATICA will work on many computer systems and in various operating environments.

All the possibilities of MATHEMATICA package mentioned above help us to caleulate, for example,
Christoftel’s symbols of the first kind directly from the delinition (6) without analysing the inner structure
of expressions. It is shown in [7] that a short analytical form for ey can be obtained using the plannai
tensor of inertia:

n
Tay=3, (mi{T3}" Ar,a] [EONTEN} (1-1(a) +
i=sup(By)

+ (1=1(@)(1~1@NA 1) 1Py () (i) 1) 1)) (i2)
where:

[ =inf(y,a),

=Jcix+Ic;v+HIc,
. 2)__1 Jeixy JCixz
J Jeix=Jey+ie;
my= JCix M et o (13)
J(',', +J( i "-/(",z
Jo, o JC;zy .__.'_._2_»‘___“

In the program presented in the next Chapter, calculation of Tug, will be performed direetly torm
relation (6) as well as from (12). In that way, we want to prove the results given in |7] and, at the same
time, to show that it is not necessary to analyse the structure of Tug,y. Our program is based upon relations
trom Chapters 2 and 3 and is completely given in Chapter 4.
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. PROGRAM OPNCHAIN.M

(SesesrasennsaRaRsERRRaRER SRR AR R LR LRR AR RANRRA NSRRI S AR S

PROGRAM OPNCHAIN.M by S Markovic, A.Obradovic
Wiritten for Mathematica386 symbolic interpreter

A AR RN RN R AR AR AR AR IR AR AR KA RN RN

Format[q[n_]] = Subscripted[q(n]. 0, 1]
Duallv_] *= {{0.-v[[3]].v([2)]}.{v([3]).0.-v([[1)]}.{-v[[2].v[[1]].0}}

vplvi_ve ] = {
vi[i2]j v2[{3)]-v1((3]) v2[[2]].
V(3] v2([(1]]-vI{[1]] v2((3]].
vi{(1]) v2((2]]-v1[(2]] v2[{1]]
}

Mi[i_j_.q_1_e_] = Transpose(Mt[j.iq.te]] / i>)
Mt[i_j_.q_t_e_] := IdentityMatnx(3] /; i==|

Mtfi_j_.q_t_e_] ‘= IdenutyMatrix[3] +i[t[[}]] = =0.
(1-Cos(q())Dualle(()}). Dual(e[]]] +Sin[ql]]Dual(e((]]].0) 7 i+1==)

Mt[i_j_q_t_e_]:= Mtlii+1.qte]M[i+1]qle]/ i+1<]

~~Pufti] = {
{(u[[2.20)+([3.3))-((1,1J)r2.4[(1.21]4([1.3]))
{12, 1).0i(1,1)] +[33])-[[2.2)])2-4(2.3])).
{-0((3.1]14([3.20) (1. 1)) +([2.2))4(3.3])/2}
}

Rd[i_.j_.q_t_e_ro_roo_] := t[[illqg[ile[[i]] +ro[[i]] +roo[[i]] /; i==]

Rd(i_j_q_t_e_ro_roo_] := t[{ijlq[ile[[i]} +ro[[]] + Mt[ii+1.qt.e].Rd[i+1,jq.e0.r00] /. i<

KvB[i_j_.q_t_e_ro_roo_] := If[t[(i]}==1.e[[}]], Dual{e[[i]]].Rd[i,j.q.t.e.r0,ro0]]
KovMetTen([] := KovMelTen[q,n.l.a,r'o.roo,m,(i)

KovMetTen[q_,n_t_.e_ro_roo_m_ti_] := Biock[ {i,j.ka},
Forj=nj>=1j-,
Forfi=ji>=1,i--,
ali,j) =Sum[ m[[k])KvB([i,k,q.t,e,r0,100].(Mt[1j.q.t,e]. KvBJj.k.q.1.e,ro,ro0]) +
If[t{(i}) = =0 && t[[j]] = =0, (Mt[k,i,q.e].e((il))til[k]). (Mt[K}.at.e].e[ul).0].
{kin} )
ali,j) =Simplify (a[i,j]}; a[i.j]=Chop(a[ij]];
?u.u =alij];

Helurn[A'rray[a,{n.n)]];
l

lzvPotEn[ ] := lzvPotEn[q,n,t,e,ro,r00,m,g]

lzvPotEn[q_,n_t_e_ro_roo_m_g_] := Block[ {ij.dp},
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Forli=1,i<=n,i++,
dp(i]=Sum[ m([j]] g (Mt[0.i.q.t.€] KvB[i..q.1.e.r0.r00))([3]]. {)1n}]
]qplll=s'mp"'yldpl'll. dp[1} =Chop(dp(i}}.

Heturn[;irray[dp.n]] ;
]

Krist1Dif[ ] := Krist1Dif[q.n,t.e,r0,100,m ti]

Krist1Dif[q_.n_t_.e_ro_roo_m_ti_] := Block([ {i).k.aks},
a=KovMetTen[q,n,t.e.r0,r00.m,ti);
For[j=n, j>=1j--,
Forfi=ji>=1--,
Forlk=nk> =1 k-,

ks(1.i.k] = (D[a[(j k]).q(i]] + D{a{[i.k]}.aL}]-Dla([: )] a(x]]) 2
ks{i.j.k] =Simplity [ks[i..K]}: ks[i} k]=Chop(ks|1) k]
ks().1.k] =ks[i..k].

Ii

Return[Array(ks.(n.n n}]).
]

KnstiMat( ] ' = Krist1Mat(q.n t e.ro.ro0 m.ti]

KristiMat[q_,n_t_e_ro_.roo_ m_ti_] = Block[ {1k pks}
Forfj=n |>=1-
Forfi=ji>=1 -
Fork=nk>=1k--
I=Min[i.k].
ey ks[1).k] =Sum|
[t[(1)) = =0.
m([p]) Vp[Mt(Li.q.t.e] e[(i]}.Mi[I;qte) KvB[j.p q.t.e.ro.rooj)
(Mt[lk.q.t.e] KvB[k.p.q.t e.r0.100]) 0]+
()] ==0 && 1[[j}}==0 && t[[K]] ==
Vp[Mt[p j.q.Le].e[]].
Mi[p.k.qte] ef[]]]
PUlt[(p]}].(Mt(p.i.q.t.e] e[[1]}).0).
{p-Max[j.k].n}].
ks(i.j k] =Simplify [ks(i.}.k]]; ks[i..k]=Chopl[ks([i.j.k]]:
ks[j.1.k] =ks[.}.k]
1
]

)
Return[Arrayks.{n.n.n}]). |
]
© Null
5. EXAMPLE

Our program was tested for manipulator with tive degrees of freedom. The same example had been used
as a test in monograph [1] for all programs described in the book.
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Figure 2: Manipulator with 5 degrees of freedom

This example, with two kinematic joints of the fourth class, shows that our program is restricted not only
to bodies interconnected with kinematic joints of the fifth class but also to those types ol joints which
can be reduced to joints of the fifth class. We have used virtual bodies and dimensions to avoid such
limitations. According to monograph [1] we have the following input data:

(* Schielen - Ulazni podaci *)
n=5
m = {0, 250, 0, 150, 100}
ro = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 1/2, 0}, {0, 1/20, 0}}
roo = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, -1/2, 0}, {0, 0, 0}}
= '

{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},

{{90, 0, 0}, {0, 10, 0}, {0, 0, 90}},

{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},

{{13, 0, 0}, {0, 3/4, 0}, {0, 0, 13}},

{{4,0,0), {0, 1,0}, {0, 0, 43/10}} }
t={1,01,00}
e = {{0,0, 1}, {0,0, 1}, {0, 1,0}, {0, 1,0}, {1,0,0}}
Null

To avoid significant loss of accuracu during complex calculations we prefer rational than decimal
numbers on input. MATHEMATICA will maintain the maximum possible internal working precision as
long as all input quantities are represented in the rational form.
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Finally, we present some of our results obtained by means of our short but powerlul program:

o . . )
a) derivatives of potential energy i]‘, :
d

{500g,0,0,-5gSin[q*)Sin[q®],5gCos[q*]Cos[g®]}

b) coordinates of the basic metric tensor (e.g. ag):

- (Cos{gq*]Sin q%]1(50 + 71 Cos q° +100q3))
N s
20

¢) Christoffel’s symbols of the first kind calculated from relation (6) (e.g-I'ss2):

5Sin[g*)Sin[q®)(1+2q%))
(

d) Christoftel’s symbols of the first kind calculated from relation (12) (e.g-T'ss2):

-Sin[q*]Sin[q®](-10-Cos[q®]+ Cos[q*]? Cos[q°]+Cos(q®]Sin[q*)? —20qg?)
4

e) Contravarinat coordinates of the basic metric tensor (cga'ly
733125
==

.’j—ag§+ << 128 >> + 156250 Sin[q*]2 Sin[q°]'q°?

+<<71>>+625 Cos[q*]2 Sin[g3]4q??2

The analytical representation of contravariant coordinates of the basic metric tensor is extremly complex
and therefore almost useless for some practical purposes. For example, the coordinate a'! can be
writtem as a rational number with 73 items in the numerator and 130 in the denominator. 1t is casy to
understand that analytical expressions of Christoffel’s symbols of the second kind could be even more
complex.

6. Conclusion

The primary result of this paper was to demonstrate a general computer program for sctting of
differential equations of motion in an analytical form. The program can be used (or systems ol rigid
bodies interconnected with kinematic joints of the fifth class. But, in our example, itis shown that the
program can be applied 1o joints of the {ourth class too. It is relatively casy 1o modily this program to
deal with open chains with branching (“structure of wood" [3]) orto caleulate arbitrary gencralized forees
(from elastic elements, dampers ctc.) what is going 1o be the subject of our lurther work.

The results of [7] have been also confirmed. We have shown that it is not neeessary o analyse the
structure of Christoffel’s symbols of the first kind because MATHEMATICA will do it internally and
perform almost all possible simplitications without requesting any specilic algebraic rule from the user.
However, rom time (o time, some more complex simplification rules could be necessary it we wanted
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(o obtain the analytical expressions in the shortest possible form (with minimum number of operations).
But, it was not the purposc of this paper.

i i i ! LI 3, written i s of generalized coordinates
Simplificd analytical expressions for a «p . 7 and [y, written in terms of generalized ¢
I
¢ give the opportunity for the fastest possible caleulation of respective quantities for any sl_)c:cml system
configuration. That fact is of great importance in solving the direct and the inverse task ot dynamics as

well as in real-time dynamics.
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