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OPTIMAL CONTROL OF A RIGID BODY SYSTEM
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1. Introduction

This paper is concerned with the time minimization problem in controlled
motion of rigid body system in a complex case, when the optimal trajectory has
portions with singular arcs [6]. Description of the problem of this kind of the
optimal control with particular attention on (im)possibility of the singular arc
existence is given in the second section. The third section is concerned with joining
the singular and non-singular portions of the optimal trajectory.

This joining appears usually in practical tasks, for example in control of ma-
nipulators. Authors of the paper [4] tried to find solution with a singular part.
However, they did not find a solution as it is shown in [9], because their solution
does not satisfy junction conditions [3, 6]. The solution, for the same type of
manipulator as in [4], with a singular control of the first order [7] (in [4] was
considered singular control of the second order) on a part of the optimal trajectory,
will be obtained in this paper. This solution satisfies the above mentioned Jjunction
conditions [3, 6] as well as all conditions of the Pontryagin’s maximum principle
[5] on the entire time interval of the controlled motion. Based on an analyses given
in the fourth section, numerical solution is given in the fifth section.

Present difficulties related to numerical aspects of the optimal control theory
have caused that certain number of papers cover only calculations of optimal con-
trols in concrete cases (case studies [4], [9], [10]). A problem becomes more complex
when possibility of singular controls arises, which is considered in this paper. In
optimal control in manipulators, as the most frequent objects of implementation,
an optimal control with singular parts has not been calculated till today, which is
obvious from the overview of recent papers given in [11].

It is also known that numerical aspects limit application of the optimal control
theory in cases of typical engineering tasks, and having it in mind, the numerical
calculation of the optimal controls in the fifth chapter figures out as the basic
contribution of this paper. In previous chapters it was necessary to examine
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all conditions derived from the theory for singular optimal controls, because its
improper application, as it is shown in [4, 9], leads to wrong results.

2. Optimal Control with a Minimal Time (Problem Description)

Consider a holonomic, scleronomic mechanical system the motion of which is
described by canonical equations:

q'i = aijpj
7 1 da¥ il
Pk=—-2'—a‘(;;;Pin"W+in L,j,k=1,...,n (1)

where ¢* are generalized coordinates, p; impulses, II(¢*) potential energy, a'l(g*)
contravariant coordinates of metric tensor of configuration space and n is number
of degrees of freedom (DOF). Quantities Q} are controls uz with given limitations:

|lup| < Ck E=1,...,n (2)

where Cp are given positive constants. The task is to establish how to change
quantities ur = ui(t) which satisfy (2), to bring system from initial to final state
in a minimal time 7. These states are settled as:

O =0 ¢M=4", PO =po, (D) =ps, i=1,...;n (3)

Suppose in advance that problem formulated in this way has a solution.

To find a solution, Pontryagin’s maximum principle [5] will be applied. In
order to use it, we form Pontryagin’s function H (12]:

i; [ 1 0a" on e
H=/\0+/\“a‘JpJ+Vk(_§6a?p'pj—a—q?+uk) Z,J,k=1,...,n (4)

and after that co-state system:

. kj 2,41
,\iz_a_H_ ’\aa’ +yk(13“ 3211)

ag kg Pi 5ijm+¢fiq—*¢9F
; OH : . Oa’*
Ve il | pin 2% 5 =1... . n
et dia +u’aq, ¥ AR T=0"" % (5)

Before we go to deriving optimal controls from condition:

(H)opt = sup H, lui] < Ci, i=1....,n (6)
u;

it is necessary to check out whether in some subinterval of the time interval [0, 7],
for some k, is v* = 0. In that case maximum principle is ineffective for determining
u; and such a control is called singular [6].

We will show that controls, singular in all coordinates (FF=0k=1,... ,n),
do not fulfil necessary conditions of extremality. In this case, by (5) and |a'/| # 0,
we obtain A\; = 0,i =1,...,n. Uncertainty of 7 causes H = 0, consequently
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As = 0, which is contrary to Pontryagin’s theorem. This means that during some
subinterval in the time interval [0, 7] at least one control u; is on the limit (ur =
+C;).

When v* =0,k =1+1,... ,n the maximum principle gives:
up = cprsignvM b S e )

wherefrom it is obvious that I controls are on the limit (“bang-bang”), while the
others are singular. A number of possible variants is 2" — 1, and among them
extremals are to be found. One of the variants is the one with all controls of the
“bang-bang” type. In the case of one DOF, the control is on the limit, while for
a larger number all possibilities have to be checked out, and among all solutions
(if there exists more than one) which satisfy maximum principle, the optimal is to
be chosen. Application of the Pontryagin’s maximum principle is limited by the
difficulties due to numerical solution of the two-point boundary value problem of the
system of equations (1) and (5). In [10], a very efficient numerical method, directly
derived from the Pontryagin’s principle, is implemented, where for the manipulator
with two DOF the optimal control of the “bang-bang” type is obtained.

3. Extremal Trajectories With Singular Arcs

Consider a case of singular control in one coordinate u;, when v* = 0. All
conditions of the Pontryagin’s theorem are fulfilled, but by the theorem we cannot
calculate uj from the condition:

OH E

=yt 8

ur 8)
This case is often met in practical tasks and is not caused by the special task
parameters but by the complexity of the case itself. To find ug it is necessary to
further differentiate (8) in accordance with (1) and (5). It is shown in [6] that u;
appears only in even derivatives: 4

d¥ 9oH
277 Juy 0. 9)

First natural number g, for which u; in (9) appears, establishes order of singular
control.

In [1] possibility of singular control is shown in particular cases:

a) when (1) and (5) can be disassembled in several independent subsystems;
minimal time is the largest one of the minimal times of the subsystems, while the
other controls are singular, and determined in order to satisfy (3);

b) when u; = Q; and configuration space is Euclid space (a” = const); this
case can be reduced to the previous one;

¢) when ¢! is cyclical coordinate and a¥ = 0 for J # 1; at the same time,
physical meanings of particulars singular controls are given.
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Assuming that the cases when the control with singular arcs during the entire
time interval [0, 7] can satisfy (3) are seldom, a problem of Jjoining singular and
non-singular portions of the optimal trajectory appears. Then, we first determine
regions in 4n-dimensional space of state and co-state variables, in the section of
which singular trajectory lies. Then we intend to connect non-singular portions to
it, which satisfy initial and final conditions.

For the optimal control, not only conditions of the maximum principle on
the entire time interval [0, 7], but the junction conditions [3, 6] are to be satisfied.
Observe such an optimal control which in ¢ = § has a discontinuity, so in the interval
on the left of the point it is singular, and in the interval on the right of the point,
the control is on a limit. Constraint conditions are reduced to the requirement that

the quantity L given by:
o (d* OH
TV A e L ik P
L=(-1) Bur (dm 6“) (10)

achieves the first value less than zero at the point t = 6, when ¢ is an odd number.

These conditions are related to the trajectories with piecewise-continuous con-
trols and admit the joining only for singular controls of odd order. Joining can
be made even when they are not fulfilled, while the singular portions cannot be
coupled with piecewise continuous controls, but with those which in a finite time
interval have infinite number of discontinuities [7, 8].

4. Analysis of Solution for Case of Manipulator With Three DOF

Results of previous sections will be implemented in determination of the opti-
mal control of manipulator with 3 DOF, a simplified scheme of which is shown in
Fig. 1.

After transformations in nondimensional variables [1] equations (1) and con-
straints (2) become:

1

.1 o q 2
p——s = ee— + u
q 1 P1 (1 +(q1)2)2 (p2) 1
o 1 5% &
qg = 1+(q1)2P2 P2 = uz
¢° = ps Ps=uz— B3
el €1,  Juz|<eay  us| <5, (11)
where ¢y, ¢3 and B3 are non-dimensional test parameters.
The Pontryagin’s function becomes:
1 ¢'(p2)?
H=X+Ap +Ag——— A +u’(—'+u +
B b S (q1)2P2 + Aszps 1+ ()7 1

+ v?uz + 13 (uz — B3) (12)
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Fig. 1. Manipulator with 3 DOF

and over it, the co-state system:
2pag’* ((e1)? -~ V(p2)® ,

M= Tt ()
A.z =0 :

;\3 =0

=)y

. -1 —2q1

= e T

P =),

125

(13a)

(13b)
(13¢)
(13d)

(13e)
(13f)

By the analysis of equations (11), (12), (13) as well as initial and final con-
ditions (3) it is clear that this system can be separated into two independent
subsystems (the third DOF is independent of the other two). The task is resolved
separately for each of them, and optimal time is the largest one of the minimal
times [2]. In the paper the problem for the first two DOF will be solved, because
the optimal solution for the third is basic and can be found in almost any textbook

on the optimal control.

The question of existence of the singular arcs on the optimal trajectory for
manipulators is open in [4] and the same type as in this paper is considered, among

the other manipulators, with initial and final conditions:
¢'(0)=4¢'(r)=¢" (r)=¢" >0
9°(0) = p1(0) = p2(0) = py(7) = pa(r) = 0

(14)
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By the maximum principle, possibility of existence of the singular control in one
coordinate is shown. For certain values of the task parameters, it is suggested that
we follow the next structure of the optimal control:

a) control u; has one discontinuity;

b) control u; with one discontinuity leads the effector in a “static” state in the
position with minimal mass moment of inertia, where it remains for maximum pos-
sible time (u; = 0 is a singular control), and after that, also with one discontinuity,
moves back to the state ¢'(7) = ¢*(0).

It is shown in [9] that this solution does not satisfy the constraint conditions of
singular and non-singular part of the optimal control (10). The problem has been
solved numerically for different values of the parameter ¢*(7), where it is obvious
that decreasing of the parameter increases the number of discontinuity points. The
mass center of the hand (effector) and loading oscillates around rotation axes. In
that way the optimal control time is less than the time of the singular part regime,
which can be explained by the fact that in oscillatory motion the slowdown of hand
appears later than in the case of regime with staying on the axis. This reduces
some average value of the mass moment of inertia for the rotation axis.

Controls with singular arcs of this type (¢ = 2) can exist only at some suffi-
ciently low values of ¢!(7), but in combination with controls which on finite time
interval have limitless number of discontinuity points, as it is shown in [8]. Such
controls are not important in engineering.

The possibility of existence of a portion of the singular control in coordinate
us is investigated here. Such portions can be joined (as singular control of the
first order, ¢ = 1) with non-singular “bang-bang” portions. For the values of the
non-dimensional task parameters, we take:

0)=1, ¢(0)=0, ¢'(1)=2 «j’(f) = 0.363
p(0)=2, p2(0)=0, pi(r)=0, pafr)=0. .
c2=6 (15)

Based on previous considerations, the following possibilities of the optimal
controls on the particular time subintervals inside time interval [0, 7] exist:

1

u; = signv uy = cq sign v? (16a)

u; = signy! u=? (V¥ =0) (16b)

We find the appropriate derivatives of Pontryagin’s function which we use in
further analysis:

oH _ ,
6_112 =V (173)
- 132 - 1 1
d OH -(1+(q’) YAa — 2¢ pav (17b)

& Puy 1+ (g)2)?
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& H _ —2¢'pi)ds — 2pipav’ — 20 uzpt 4 2¢1py)y (170)
dr® 3u; (1+(¢')?)? )

2k 1.1
et 00, 2y . (17d)

duy d%F Juy — (1+ (q1)7)2’

In the junction point, for k =1, L < 0 is necessary, in other words v! < 0
(#; = —1). This condition can also be derived from Kelley’s conditions [3, 6] on
the singular part. Parameters of this task are such that initial velocity is to be
decreased (u; = —1), so there is reason to suppose that singular control starts from
the beginning of motion. The right-hand sides of the expressions (17a,b,c) are equal
to zero, p2(0) = 0, so A3(0) = 0, and taken into account in (13b) Ay(t) = 0 on the
full length of time interval [0, 7]. It is then over (17b) on singular part p2(t) =0,
so we can finally say that u; = 0 (results from (17c)). This can be explained as, in
mitial interval, the hand does not rotate because if it rotated, the so-called “inertial
force” would obstruct control while breaking.

All above, for this task, leads us to suggest the following structure of the
optimal controls:

u = -1, uy = 0, te[0,t]

u; = -1, uy = 6, t € (i1,1,)

gi=1, us = 6, tE(tz,t;;]

W =1, us = —6, t€(ts,1]. (18)

Now, we have to calculate all state and co-state variables on the entire time
interval [0, 7], to confirm all conditions of the maximum principle.

5. Numerical Solution

At the initial, singular part we have analytical solution:

q1=1+2t—%t2 ’=0
n=2-t p2=0
A1 = A(0) Az =0
vl = v1(0) - X, (0)¢ vi=0. (19)

In further motion it is necessary to make numerical integration of the system
of equations (11) and (13). Results are given in Table 1, diagrams of the state
variables on entire interval [0, 7] are given in Fig. 2 and diagrams of the co-state
variables in Fig. 3.

The task is solved in the same way as in [9]. First, the four unknown time
instants ¢, to, {3 and 7 were determined from final conditions for state variables:

t, = 2.695 t5:=3.115 t3 = 3.298 7= 3.900 (20)
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t q1 qz 91 pz l] V‘ \‘?
2.695 2.758 0.000 -0.695 0.000 -9.959 -4.189 0.000
2.737 2.728 0.001 -0.737 0.252 -9.959 -3.771  0.002
2.1719 2.697 0.003 -0.779 0.504 -9.960 -3.353 0.006
2.821 2.663 0.006 -0.820 0.756 -9.962 -2.934 0.013
2.863 2.628 0.010 -0.861 1.008 -9.965 -2.516  0.021
2.905 2.591 0.016 -0.900 1.260 -9.970 -2.097 0.030
2.947 2.552 0.024 -0.939 1.512 -9.977 -1.678 0.040
2.989 2.512 0.033 -0.976 1.764 -9.984 -1.259 0.049
3.031 2.470 0.044 -1.010 2.016 -9.992 -0.840 0.057
3.073 2.427 0.057 -1.043 2.268 -9.997 -0.420 0.063
3.115 2.383 0.072 -1.072 2.520 -10.000 0.000 0.065
3.133 2.363 0.079 -1.047 2.630 -9.999 0.182 0.065
3.152 2.344 0.087 -1.022 2.739 -9.997 0.365 -0.063
3.170 2.326 0.095 -0.996 2.849 -9.994 0.547  0.060
3.188 2.308 0.103 -0.969 2.958 -9.988 0.730 0.057
3.206 2.291 0.112 -0.941 3.068 -9.980 0.912 0.051
3.225 2.274 0.121 -0.912 377 -9.969 1.094 0.045
3.243 2.257 0.130 -0.882 3.287 -9.955 1.276  0.036
3.261 2.242 0.141 -0.851 3.396 -9.937 1.457 0.026
3,279 2.226 0.151 -0.820 3.506 -9.915 1.638 0.0'4
3.298 2.212 0.162 -0.787 3.615 -9.889 1.819 0.000
3.358 2.168 0.198 -0.680 3.254 -9.785 2.412 -0.058
3.518 2.130 0.231 -0.581 2.892 -9.674 2.998 -0.126
3.478 2.097 0.261 -0.489 2.530 -9.564 3.578 -0.202
3.539 2.070 0.287 -0.405 2.169 -9.462 4.151 -0.281
3.599 2.048 0.310 -0.327 1.808 =9.377 4.718 -0.361
3.659 2.031 0.329 -0.254 1.446 -9.310 5.281 -0.436
3.719 2.018 0.344 -0.186 - 1.085 -9.264 5.840 -0.502
3.780 2.008 0.355 -0.122 0.723 ~9.238 6.398 -0.5%4
3.840 2.003 0.361 -0.061 0.361 -9.227 6.954 -0.589
3.900 2.001 0.363 0.000 0.000 -9.226 7.510 -0.601

Table 1. Results of numerical integration

and numerical integration of the base system (11) was made on interval [ty,1;].
Then, after estimating A (t2) = —10 (freely chosen because system (13) is homoge-
neous) and under conditions v!(¢;) = 0 and A; = const = 0, numerical integration
(backward) of the systems (11), (13a) and (13d) on the interval [t;,¢;] was done.
Thus, values v!(t;) and A;(t;) were obtained. At the end, numerical integration of
the system (11) together with (13a), (13d), (13¢) was made upon interval [t;,7].

It is obvious from the solution that ¥?(t3) = 0, as well as uy satisfies (16a).
Also, over the values obtained and condition H(t;) = 0, Ag can be calculated, which
confirms that it is non-positive, which is the outcome of Pontryagin’s theorem:

Xo = =Mi(t)pi(t) + v (1) < 0. (21)

The solution of the problem satisfies all conditions of optimality expressed
through the maximum principle. Is this solution optimal? It is necessary to show i
controls u; and us of some other structure which satisfy maximum principle exist
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Fig. 2. Diagrams of state variables

and then to determine one of the minimal time among them. If they exist, the
number of switching points must be larger, because in the supposed structure this
number is the minimal possible to satisfy the final conditions for state variables.
However, precise analysis from the mechanical point of view will show that such

obtained time must be larger than one here calculated, i.e. calculated controls are
optimal.

For different task parameters, the solutions would be of a different approach.
For example, let only ¢?(7) = 0 be changed. Then, one more unknown time instant
must be obtained (discontinuity of u3), so we could have five of them. They must
satisfy four final conditions for state variables and minimize final instant, which
leads to a more complex process of their determination. In this paper ¢%(7) was
sufficiently far from zero. More details can be found in [1].

6. Conclusion

It is shown in this paper that in minimal time control problem, when the control
is non-potential generalized force of limited coordinates, at least one of control
vector coordinates takes values on its own limit. At the same time, it is necessary
to consider possibilities of singular arcs existence, but not in all coordinates. If
singular arcs join non-singular, appropriate junction conditions have to be fulfilled.

Optimal control of rigid bodies system motion has large implementation in
manipulators control. Authors of [11] give a comprehensive overview of the last
twenty years efforts in this field, where it is shown that in problems of here analysed
kind the solution with singular arcs has not been found till now. The difficulties
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commecied with sumerical aspects of the mathematical theory of the optimal control,
¥ad 1o significant simplifications in cases with more than one DOF. For example,
; endeflector can be given (decrease number of DOF), equation can be
Smcarized and so on. Thus obtained controls are so-called “suboptimal” and are

mear to optimal.

In [9] proper optimal control is given, what is seldom. In this paper, optimal
conirol is given too. Optimal trajectory in this paper contains a singular arc, which
is not the case in [9].
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ONTUMAJIBHOE YIIPABJIEHUE IBUXKEHUEM CUCTEMBEI
TBEPIBIX TEJI B OIIHOM CJIOKHOM CJIYYAE

OTa CTaThf NOCBAILEHA 3aJaue ONTHMAILHOTO GRICTPONEACTBUA NIA CHC-
TeM TBEPJBIX Tell. YTpPaBJeHUAMU ABIAIOTCA HEKOHCEPBATUBHEIE 0606IeHkIe
CHJIBI, C OrPAaNMYEHHBIMU KOMIIOHeHTaMM. Jloka3aHa 3Mech BO3MOMKHOCTBH OCO-
Goro ympanienus TONLKO MO 4aCTH KOMIOHEHT BEKTOpa ynpabiemus. Pac-
CMaTPUBAETCA COMpPsKeHne 0COBLIX M HeoCOGEIX yYaCTKOB ONTUMAabHOM Tpa-
extopun. IlocTpoeno uucineniloe pelrenve MIA OAHOTO THUIIA MaHUIIy JIATOPA,
TAe ONTHUMAJIbIIOC ynpaBienne uMeeT ocobulif yyacToK.

OPTIMALNO UPRAVLJANJE KRETANJEM SISTEMA KRUTIH TELA
U JEDNOM SLOZENOM SLUCAJU

U radu je resavan problem minimizacije vremena upravljanog kretanja sistema
krutih tela. Za upravljanje je uzeta nepotencijalna generalisana sila ogranicenih



w

koordinata. Pokazana je mogucnost postojanja singularnih upravljanja samo po
delu koordinata vektora upravljanja. Razmatrana je problematika sprezanja singu-
larnih i nesingularnih delova optimalne trajektorije. Dato je numericko resenje
odredivanja optimalnih upravljanja kod jednog tipa manipulatora u sloZenom
slu¢aju, kada postoji singularni deo.
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