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1. INTRODUCTION

In the theoretical field of optimal control, the motion op-
timisation of systems with limited phase state has been
discussed in detail, but the mathematical models of those
limitations do not show their physical essence. The basic
problem of the determination of the optimal control which
provides the motion along the optimal trajectori according
to the restrictions imposed (theorems 22-25, [ 1]) is being
solved. The immediate application of such solving proce-
dure of mechanical system control problems is sensible if
the phase limitations belong to some subjective require-
ments (insurance against undesirable behaviour of the sys-
tem, for example). But, if the motion of mechanical system
is limited by material constraints, then, independent of the
control, the constraint occur which, according to the pro-
cedure mentioned, would remain "hiden" in the solutions
for optimal control. Another important fact (which is not
considered in the mathematical theory of optimal control)
is the difference between the holonomous and unholono-
mous constrains, although some authors [2] call holono-
mous constraints all phase limitations.

The constraint reactions in practical problems present the
load of the system with useful of harmful consequences,
and thus it is neccesary to have a possobility of influencing
their behaviour during the motion control proces. There-
fore in this paper, the mathematical model of a mechanical
system will be written in such a way that it provides the
explicit presence of constraint reactions. Thereby, if the
consideration of all constraint reactions is unnecessary, the
structure and dimension of the phase space will depend
upon which and how many of them are the object of our
interest.

2. FUNDAMENTALS OF THE PROBLEM

Without diminishing the generality of the method which
will be presented in this paper, we shall confine ourselves
to the consideration ofsa scleronomic mechanical system
the state of which is, in 2n-dimensional phase space, de-
termined by generalised coordinates q* and generalised
momentums p, (x=1,2,...,n). Hamilton‘s function of such
asystem presents the total mechanical energy and has the
following form:

1
H=T+I1=5a" (q)p, pp+T1(a) @-1)

where: T - kinetic energy, I'1 - potential energy, a™ - con-
travariant metric tensor of configuration space.
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Beside the potential force, let a non-potential force act
upon the system:

Q= Qu(q, p,u) (2-2)

where u is the control vector with coordinates u; (i=1, 2,
..., 1) from the vector space U,. In addition, let the motion
the system be limited by the mechanical holonomous con-
straints:

¢'@=0 (v=1,2,...,1y) (2-3)

and mechanical non-holonomous constraints:

(abf bR
b2 (q) ¢* =0 2 205 (P=1,2,..1) (2-4)
\o¢®  aq%) )

The constraints are smooth and continuous where func-
tions (" (q) possess continuous second differentials. In that
case, system is, beside the potential and non-potential
forces, exposed to the action of forces-constraint reactions
(2.3) and (2.4):

v
Ry =2, g;% iy bE (2-5)

so that , for the description of the motion such a system in
the phase space, we have the equation [3]:

(']a=a_H
o
(2-6)
oH o¢”
i = —§+Qa(q,p.u)+lv—a—:%+upbg

where A, and p, are undetermined multipliers from the
space U (I=l;+l,). Let in the general case, the admissible
controls be limited, i.e.:

ue G, c U, 2-7)
and let the reactions (2.5) be exposed to certain limitations
which can be expressed as:

AyeG,cU, ppeGucl (2-8)

The areas G,,, G, and G, can be open or closed sets, con-
stant or variable, and admissible controls ui and admissible
multipliers A, and H,, can be a piecewise continuous func-
tion with a finite number of interuptions in the interval [t,,

4.
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Considering (2.6) the non-holonomous constraints (2.4)
can be written as:

bP*pe =0 (b"*=a"F bf)

If, in addition to the constraints (2.3) and (2.9) following
limitations are imposed on the system:

£@.p=0 (k=1,2,..,m) 2-10)

which do not present mechanical constraints, the structure
of Eq. (2.6) will not be changed. This fact indicates a cru-
cial difference between constraints (2.3) and (2.9) on the
one hand and limitations (2.10) on the other. Relations
(2.3) and (2.9) are fulfilled allways regardless of controls
u;, whereas limitations (2.10) hold only for the optimal
solution.

The condition for optimality can be written as:

Y

[ F@, p, u) dt - inf @-11)

Y

where the state of the system on the interval ends [tg. t;],
is presented with manifold:

Qslalty). p(ty), q(t), p(t). =0 (6=1,2, ...5,<2n) (2-12)

It is important to note that, if constraints (2.5) are also
included in some optimality requirements the subintegral
function in (2.11) can depend upon multipliers A, and Ho-

Basing upon the above, the task of the optimal control of
the motion of a constrained mechanical systemn is defined
by relations (2.3), (2.6)-(2.12).

3. SOLUTION OF THE OPTIMAL CONTROL TASK

The problem previously defined problem should be for-
mulated in a form convenient for the solution by applying
the method of the optimal control theory. For that purpose
let us introduce into the consideration vector space U, of
vector v with coordinates vy (y=1,2, ...,z<n) and perform
the following transformation:

a v
Q. (q,p u)+kv5%+pp b =dl, v, (3-1)
q

where, in the general case, d\’Ol (q, p) are certain known
tunctions. Let:

v
rang a—Q—“,QSL.bg =k =inf (n, r +1) (3-2)
aui aqa
In the case when r+(>n (k=n), we can assume that:
I, a=y (1,2,...n)
¥ e £
da {0, oy 3-3)

where by for r+l= n transformations (3.1) are unique and
can be expressed as:

=y (qp,v) (i=1,2,..,71)
A=A (@pv) (v=12,...1) (G4)

Ho=Hp (@ p. V) (P=1.2,... 1y
For r+>n transformations are not unique thus r+l-n the

quantities A,, p, and u; can arbitrarely be choosen from
(2.7) and (2.8).

In the case when r+l<n in relations (3.1), y=1, 2, ..., z=r+l
should be taken. Coefficients d ' should be choosed in
such a way that the n-(r+) relations are excessive.

After the transformations (3.1) equations (2.6) obtain the
form:

‘« OH
o
q*=——
0Py (3-5)
. __oH .,
Po =~ P +dy vy
wheére the admissible control are:
v €G,cU, (3-6)

The set G, from the space U, is determined by the restric-
tions (2.7) and (2.8), as well as the transformations (3.1).

The optimality condition (2.11) now becomes:

4

[ ©(q.p. v) dt— inf 3-7)
f

where £°(q,p,=F° [g, p, u (q, p, V)].

In this manner, the problem previously defined, by means
of the transformations (3.1) is reduced in the form deter-
mined with the relations (2.3), (2.9), (2.10), (3.5), (3.6)
and (3.7). For the solution of the problem, the Theorem 22
[ 1] can be used, if some of the relations mentioned are
transformed into convenient form. For that purpose, let us
introduce +m dimensional vector function

:—;[wv (q)]
D°(q,p. V)= ad—t[bpapa:l E=1,2,.,l+m)  (38)

:t [g" « p)]

where by the differentiations are performed on the trajec-
tory q(t), p(t) which is the solution of eq. (3.5) for the ap-
propriate control v(t). The conditions:

5 (q,p.V)=0 Vte [t t)] (3-9)

are equivalent to the constraints (2.3) and (2.9) and limi-
tations (2.10) if at the begining moment t_ the phase point
is on the manifolds:

ol [
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Las Pa) =0,

[g*(q‘p)]' =0, (3-10)
0 (]

In other words, conditions (3.9) and (3.10) provide the
motion of the phase point along the complete interval
[t t;] according to the constraints (2.3) and (2.9) and limi-
tations (2.10).

By separating among the manifolds (2.120 and (3.10) those
with the independentgradients on the interval [t,, t,] ends
we obtain conditions:

©,=[q(t0), p(t0), q(t1), p(t1)]=0
(A=1,2, ..,p, ..., s<p<2n) (3-11)

In that way, the optimal control task, defined with the equa-
tions (3.5), (3.6), (3.7), (3.9) and (3.11), is transformed
into the form applicable for the Theorem 22 [1] which
provides the necessary conditions for a determination of
the optimal control and the corresponding trajectories
v¥=v¥(t), q*=q*(t), p*=p*(t). Returning to the initial prob-
lem, the optimal

wk= Uk (1) A*= Ak (1) p¥=p*(t) (3-12)
solutions follow from (3.4), so that we obtain:

4. EXAMPLE. HOLONOMOUS CONSTRAINT
WITH RESTRICTED REACTION

A slider with the mass m=1 (values of all physical quan-
tities are given in this example in basic units) movies in a
vertical plane on a smooth constraint under the action of
the control force u of the horizontal direction and position
A(0,0) reaches the position B(1,1) at the time t; (Fig.1).

| q?

Figure 1.

If, in the initial and the end position, the speeds of the slider
equal to zero, and if the constraint reaction is limited
IR| <4gV\2, determine control u from the condition that the
motion time is minimal.

Optimality task has the form:

=P 15|=U_}‘-
) ; (4-1)
Q°=p, py=-g+h

[dt— inf 4-2)
l0
IR| <4g\2 =>]\| <4g, Vte [0,1] 4-3)
¢q'.q)=¢’-q'=0 (@-4)
9'(0)=4’(0) = p;(0) = p5(0) = Py (t}) = Paltp) =0
q't)=q’(t) =1 =X
where . is undefined constraint multiplier (4.4).
By transformations:
Usvi+vy+g, h=vy+g
we obtain:
a'=p, @=p, p=v, Pr=v “@-7)
-5g<v,<3g (4-8)
DV, vy)=v,-v, =0 (4-9)

On the basis of (4.2),(4.7) and (4.9) we can form the the
function:

K=Yo+¥ p+¥ypy +¥5v, + Yv, + (v, - v)) (4-10)

According to the Pontryagin‘s maximum principle, we
have:

sup k=0

Ve, @-11)

\}'/lzo, lilz=0’ 4}3=—L}}l‘ \?4.:_[}’2‘ \.}loso (4_]2)
Considering (4.8) from (4.11) it follows that:

o

= =¥.-n=0

o 7T 4-13
|58 <O @-13)
27 3, ¥y>0

i.e. considering (4.7), (4.9) and (4.12):

14/,5
) 3g. Vte[0,1], =y (3_g) o
=V2= 4.3 e
=5g, Vte[ty], t|=§ (3_g)

and thus, according to the transformations (4.6):

i {7g, Vte[0,1] @-15)

Y7198, Ve[t

5. EXAMPLE. MECHANICAL SYSTEM WITH
UNHOLONOMOUS CONSTRAINTS

Body I which can along its rotation axis transmits the ro-
tation from disc 2 to disc 3 (Fig.2). Force F (F< 1) acts on
body 1, and the torque M acts on body 2, which rotates
with the constant angle speed Y=1. The internal matrix
of the system is the unit matrix.
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Figure 2.

It is necessary to solve following problem:

X(t) =0, B(t) =2,

t|
S0t Gy t_[d:-»inf -1)

0

The internal system constraints are:

gf"fg’ = 5-2)

and the given limitation is:
y-1=0 (5-3)
By intoducing the variables:
1_ 2 _ i 4_¢
¢ =X q=¢ qg=y q =0 (54)
Pi=X, P2=¢. p3=W. py=0

considering (5.2) and (2.6), we obtain the motion equa-
tions:

b | =2 =5 o 1
9 =Pp» 9 =P2 4 =P3» 4 =Py
Pr=F py=-h +Hy ©-5)

py=M+ l‘[(lﬂll)‘ Py = ‘Hztl‘
and the limitations:

(1+4")p3 P2 =0, p,-q'py=0, p;—-1=0 (5-6)
where pt; and i, are the constraint (5.2) multipliers.
By transforming:

vi=F, V=, V3= M (1Y), v=-1q'  (5-7)
Eq. (5.5) can now be written as:

q=pp p=v; (i=1,2,3) (5-8)

basing upon which, the limitations (5.6) now become:

PIP; +(l+ql) V3=V, =0

V)= PPy —q'vy =0 (5-9)
v3=0

where
vil1 Vite [t t] (5-10)

The conditions on the boundaries of the interval [t 4],
considering (5.1) and (5.6), are:

q'(to)=1, Py(tp)=0, Py(t)=2. Ps(to)=1, py(to)=2

5-11
a't)=3. Pi(t)=0. putp=t

On the basis (5.1), (5.8) and (5.9) we have the function:

4 ,
K =Fo+Z (‘Fipi+¥a,ivi) +n 1[P1P3+(l+ql)"3“’2:|+ 5-12)

i=1

+”712 [Vz“ P1P4— q'v4]+ N3V3

where:
¥, <0
Wy=-mvs v, ‘.¥’5=—‘.P1—nlp3+n2 P4
¥,=0 W=, (5-13)
l{’.! =0 ‘P7 =—Lp3‘ NPy
=0 Wy =+ mp,

Transversality conditions, considering (5.11), are:

\Pz(to) = qu(tc) = ‘Pa(to) =0,
Faty) ="F3(t) =F,(t)) ="Ve(t)) ="¥4(t)) =0
Using the Maximum principle, it is shown that all controls

v; cannot be singular [4], therefore on the basis of (5.10)
and (5.12) we obtain necessary conditions for optimality:

(5-14)

v, =sign'l's, ‘g-n+n,=0,
L{’7+nl(1+ql)+r13=0. ‘Pg—nzq‘=0

wherefrom, considering (5.6), (5.9), (5.11), (5.13) and
(5.14), we obtain:

(5-15)

v = va=0, vi=—— (5-16)

" {—1. te [0,1] V—p vt o =Py
. v V=P ’
|18 ic(t,[ll (ql)-

and finally, considering (5.5) and (5.7):

-1, te o,\/%_] M.=pl((q’)3—l)(q‘+l)

_1, te \jg‘zv—zg]. (ql)3

. P(-@Y)
s

F*=

«__P1
@ ey e

p=-t. q =—%t2+ 1, Vte[O.‘jg]

q' =%€—2\/§t+§, Vte( 3,2\/;]

9
)
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6. CONCLUSION

The method presented in this paper has been imposed by
the need analyze rezctions of either or intemal constraints
in the optimal control of the motion of a system with me-
chanical constraints. It was necessary to form applicable
mechanical and mathematical models so that the results of
the optimal control theory could be applied to a previously
defined problem. Different approaches to the problem are
possible, i.e. it is possible to solve a problem considering
the undefined constraint multipliers as a part of the control
function or with introduction of new control function
which contain, as components, constraint reactions. be-
sides, it is possible to transform the mechanical constraint
equations as limitations for control functions, according
to the initial and final system state. However, all such ap-
proaches give the same number of conditions for the defi-
nite problem solution, and which of them should be used
depends exclusively on the convenience of the solution

model. In mechanical system as, for example, closed loop
kinematic chains, it is much more convenient to use mathe-
matical model in which a constraint multiplisre exist ex-
plicitely, in relation to the model obtained by the elimina-
tion of the multipliers, even in those problems where con-
straint reactions have no influence.

Examples which were used to illustrate the methodology
in the present paper, have been choosen because of the
possibility of obtaining an analytical solution. However,
field of the application of this paper includes several im-
portant problems such as the optimal control of the ma-
nipulator where the gripper performs a limited motion, and
where the constraint reactions must be restricted.

OMNTUMAJIbHOE YNPABNEHUE U PEAKLIUN
CBA3EW MEXAHUYECKWUX CUCTEM

J.Bykoeuh, A.Obpadosuh

Pewaercsa 3ajjaua onTUMalbLHOrO ynpasieHus U
onpejiesieHusi peaKUHMH CBI3¢H 17151 MeXaHHY €CKOM
CHCTEMDI C MEXaHNYECKHMH (TOJIOHOMHBIMH U He-
IOJIOHOMHBIMHU) cBS3aMH. MeToj; Ga3upyercs Ha
NPUHLMNHKAJILHOM OTJIMYMM MEXaHHYECKHX CBS-
3e# OT APYrMX OrpaHM4eHHil IBUXKEHUS YNpaBJ-
sieMOM cHCcTeMbl. B paMKax MaTeMaTH4YecKoOMH
MOJIEJIN COCTaBNAIOTCS YPABHEHHSI COCTOSIHMS,
KOTOpbl€ SIBHO COJIEP>KMT MHOXHTEJHN CBS3H.
INpo6nema chopMynupoBaHHa TaK 4TO Ha ee He-
NOCPEICTBEHHO MOXHO NPUMEHHUTH COBPEMEH-
HYIO0 MaTeMaTHYECKYIO TEOPHIO ONTHMAJIbHBIX
NpoNeccoB NpH UCIELOBAHMH NPAKTUUYECKUX
3aj1ay.

UDK: 627.252:517.977
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The fact that only ideal mechanical constraints have been
considered in this paper, does not exclude the possibility
of application of this method to be extendid to systems
with real costraints.
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OPTIMALNO UPRAVLJANJE | REAKCIJE
VEZA MEHANICKIH SISTEMA

J.Vukovic, A.Obradovic

Resava se problem optimanlog upravljanja uz odred-
Jivanje reakcija veza neslobodnog mehanickog
sistema. Metod je zasnovan na ¢injenici da postoji
sustinska razlika izimedju materijalnih veza i drugih
vrsta ogranienja kretanja upravljanog sistema. U
okviru matemati¢kog modela problema formiraju se
jednacine stanja upravljanog sistema koje u sebi
eksplicitno sadrZe reakcije veza. Problem je doveden
na oblik koji omogucava neposrednu primenu rezul-
tata teorije optimalnog upravljanja za reSavanje
prakti¢nih zadataka.
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