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Abstract: Among oscillating motion optimi-
zation problems, attenuation problems are spe-

cially aparted in the purpose of protection of

particular system elements from the dynamic
influences. caused by extensive accelerations or
impacts. That is very important for the weight
transports, which are sensitive on influences
like that, or for proper operation of devices and
instruments connected to mobile parts of the
system. Basic aim of the attenuation system the-
ory is the decrease of the undesired actions.
Various problems of the attenuation system op-
timization were discussed in numerous papers
and monographs dedicated to this area. Gener-
alization of the optimal attenuation problem is

presented in this paper from the point of view of

analytical mechanic and theory of optimal con-
trol. Two coordinate systems were introduced:
system with absolute coordinates and system
with relative coordinates which, together with
relative velocities, determine states of attenua-
tion elements. Corresponding system of differ-

ential equations is being formed dependent of

external influence character (dynamic or kine-
matic). Different criteria of optimality is con-
sidered according to the postulated attenuation
coal. General mathematical model is trans-
formed in such manner that it is suitable for
application of optimal control methods. Solu-
tion procedure. presented in this paper, was ap-
plied on some concrete examples, closely con-
nected to the practical problems.
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1. INTRODUCTION

Great number ol technical objects or their
parts is frequently exposed to harmful mechani-
cal influences (a great accelerations, impacts.
oscillations, cte.). This can cause undesirable
conscquences such as: damage of sensitive ma-
tertals during the transport, disturbance ol work
and reduction ol accuracy precision mstruments.
noisc, cte.. For protection, their rigid constraints
are, whenever possible, replaced with the system
ol shock absorbers. The way of installation and
type of shock absorber arc caused with restric-
tions and criteria of optimality. Contemporary
rescarches ol attenuation problems are in that
directions. Numerous references in monographs
[4.5] arc prool that sudden development of the-
ory ol optimality induced at the beginning of
seventics intensive rescarches in that arca. The
level of the up-to-date computer technigue al-
lows rescarches to direct towards general type
ol system modcel. Attenuation ol one  general
mechanical system is discussed in this paper. Ba-
sic optimal attcnuation problems arc classified
here, in aim to simplily the choise of their solu-
tion method.

2. ATTENUATED SYSTEMS. DIFFEREN-
TIAL EQUATIONS OF MOTION
In attenuation problems, mechanical system
can be considered as sct of two subsystems: ba-
sic system O and attenuated system A. Let the
position of basic system O be determined by co-
ordinates  z' (i=12,....r) in regard to some
incrtial system in space X', and relative posi-
tion of attenuated system in space X* be de-
termined by coordinates x% n
regard to system related with basic system O.
Kinctic energy T of that system is represented
—_ o 0
by the sum ol basic system kinetic energy 7
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and attenuated system kinetic energy 77 1.
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where ag (z),a,-j (2,X),bj (z,x) and ga/j(.x') are
elements of covariant metric tensor :

dj /)1'/1 ((JU- = u;j + a,j-‘)

(a,l) =2 = r+s)

(1.2)

Aah = b o
of Soff
in space X" =X"UX*. Let us presume that
the entire system is placed in the ficld of poten-
tial  forces, whose potential  energy s
[T=TI(z,x) . Let, in addition to potential (orces,
unpotential forees F;oact upon basic system O.
Let the system be related to system O by shock
absorbers A, (Fig.1) :

A

Fig.1
so that the work of forces on virtual displace-
ments ol the system is
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where Q, (x,x) arc generalized forces exerted
by shock absorbers upon the system.Dilferential
equations of motion of the system, regarding on
(L.1) and (1.3),have form :
d|dT | OT dll N
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In cases when the action of system upon
system O is negligible, first » cquations of the
system (1.4) are significantly simplified, i.c. have
form :
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and represents the system ol differential cqua-
tions of motion of basic system, which can be
solved separately, if forces Fj(r) are known. In

F (1.5)

some cases equations of motion of the system in

(84
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phase space with generalized coordinates z',x

and generalized momentums  p;, p,, have con-
venient form for optimization problem solution.
By introducing Hamiltons function
H(z,x,p,p) which represents mechanical en-
ergy of scleronomic systems, differential cqua-
tions of motion have form :
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In attenuation problem analysis it is neces-
sary to consider following cases :

a) Motion z' (1)
(kinematics type action [5]). In that casc it is
enough to take in consideration s cquation of
system (1.4) which are transformed into  the
system of unautonomic cquations by introducing

i L
z (),2(0),%(1) .

b) Forces Fi(r) which act upon the basic

of basic system 1s known

system O arc known (external dynamic type ac-
tion). In this casc it is necessary to consider en-
tire system of equations (1.4). I the mfluence of
system upon basic system O can be neglected,
one can obtain solution z' =z'(r) by solving
(1.5) with

Z' (1) = z(0,2' (ty) = 2f. In that case dynamic

system initial conditions
type action is reduced into a kinematics type ac-
ton.

¢) There is no complete information about
motion of basic system and external forces ac-
tion. In that case it is necessary to Jetermine set

)UF of possible external actions (/5 € U ) and

to solve attenuation problems on that set. By
analogy this considerations can also be applied
on system ol equations (1.6).

2. CHARACTERISTICS OF ABSORBERS

Forces which absorbers exert upon the system
should restrict relative displacements ol system
and to reduce the influence of great acceelera-
tions ol basic system. In that sence it is neces-




sary absorbers to have both restitutional and

damping characteristics. I &Y is relative dis-
placement in direction ol absorber A, action

(Tig. 1), then the toree of their action has form :

K, = I\’\‘,'(/’; ("))+ K;"(;f (")]. V=12,..m(2.1)

where: KC(E) s restitutional force, KY(&) s
damping force and m 1s number ol absorbers.

Forces /\’\,(5”’),&(”

) arc called characteristic
ol absorbers. Their determination represents ba-
sic goal of attenuation problems. It is important
to note that cach characteristic depends only on
its own displacement and its own velocity. By
mtroducing a following relations :

-V v 1 2 S
& =& (_r X r)

and their diflerentiation, relative velocities in
absorber action direction are obtained :

A%
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(2.2)
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Generalized lorees Oy, in equations (1.4) are

(2.3)

obtained [rom the tensor transformation law, i.c.
Y Y ()‘gv
0 (1.5) = K, [E¥ (1) 8" (x.)]

These quantitics represent generalized char-
acteristic of absorbers. Unlike chara-cteristics
K, (2.4) depend on absorber position in system

(2.4)

dx

X The number of independent absorbers is
determined by the number of independent quan-
titics &V
I[ all absorbers are independent then m< s
and following condition is satisfied :
(') 1%
dx”

The attenuation is partial if m<ys , and is
total il m=y. If we presume that all absorbers
are independent and that there is total attenua-

(2.5)

rang =m.

tion, then quantitics &% can represent inde-

pendent coordinates of relative position of sys-
tem A. On the basis (2.5) there exist transforma-
tions, which are inverse to transformations (2.2)
and (2.3) :

ax” L
agf’g

..,5"), i = 2.6)

which causc following forms ol kinctic cnergy
(1.1) and potential energy T1(z,x) :

f(z*é@) =T%(z,2)+ ’f/‘(:.é.ﬁ.é)

Ti(z.£) = 11(z. x(£))

Equations (1.4) arc transformed into : (2.8)

2.7)
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Similarly, by introducing generalized coordinates

o : .
EY and corresponding momentums equations

(1.6) can be also transformed. I, we take m con-

sideration that forces K, depend only on one

coordinate &* and one velocity &% | equations

(2.8) arc very convenicnt. However, transfor-
mations (2.2) frequently have transcendental
form which represents very difficult problem
when terms for kinctic and potential encrgy arce
to be formed. If the difference from approximate
solution can be tolerated, in some cases, that
problem can be simplified by certain geometric
approxio-mations.
3. BASIC PROBLEMS OF OPTIMAL AT-
TENUATION. OPTIMALITY CRITERIA
Quantitics which give some estimation be-
havior of attenuated system (maximum relative
displacement and maximum absolute accelera-
tions of attenuated system) are discussed in op-
timal attenuation considerations. Their valucs
depend on external actions £ and absorber
characteristics (), , and in that sence they rep-
resent [unctionals of these values. Let, in general
case, functions d{1 [x(£)] =0
(A=12,....p <s) represent certain character-
istics of relative displacements, and functions
dz‘ﬂlQ(_\'(r)..\"(r))]Z O(u=12,...,q<s) repre-
sent characteristics of absolute accelerations of
system A. Then we consider functionals in fol-
lowing form :
Mo F)= max _dff[x(r)]

te[ty o]

Jou(Q.F)= max (lz'u[Q(.r(r))..i‘(r)].

re[r(),oo]

3.1

Functionals (3.1) have local maximum char-
acter, because of functions x(t) and x(t) conti-
nuity. Among them, those with maximum values
should be considered. In cases when norm ”\”



represents characteristic of relative displacement
of system A, and norm | represents charac-

teristic of absolute acceleration of system A,
functionals have following form :

(0, F)= max H ”
t
o (3.2)
Jr(Q,F)= max HQ (r)”
re[t,,o

It should be noted, that when the system of

external forces act upon system (commonly it is
weight) its absolute acceleration depends not
only on characteristic Q of absorber. Various
problems of optimal attenuation are allowed by

definition of functional (3.1). Let the motion of

system be described by some of mentioned

equations  systems  ((1.4) v (L6) v (2.8)) with
given initial conditions :

i N i Vo i
Ty, 2 (’o)_w’ 2z (r())-—z(), (3.3)

(1) = x%, (1) = &

Let the set of allowable functions @ (x,.x)
be noted by U, ie. Oy (x,¥)elU . Without loss
ol generality, on the example of functional (3.2),
following problems can be formulated :

1. Among functions Q (x,x) € U determine

such optimal values Qf , that is :

e -ggen
i (Q", F) <Dy,

Quantity D, is known and it restricts maxi-
mum accelerations of system A. Criterion of op-
timality (functional J; minimum), minimize
relative displacements of system A. It can be
used for gabarit system O optimization.

2. I system displacements are restricted with

given basic system gabarits, the optimality
problem has following form :
Jg(Q",F): min Jo (0, F),

Qel ‘ (3.5)

JI(Q“,F> <P,

where Dy is given.

Optimality problems | and 2 have sence only
if external forces are kinematics or dynamic
type. In cases where external forces are unde-

termined, where F; e Up , following problems

can be formulated :

6"
max J (Q",F): min  max Jy(Q,F),
FeUp l QeU FeUp ( )
(3.6)
max J’)(QO F)SI
FeUp
4.
max J. (Q ,F): min  max Jo(Q,F
Fel, " Qel Fell,, 2(Q.F),
(3.7)
max J (Q F)<I)
Fel, ' :
Problems 3 and 4 represent generalization of

problems | and 2.

Attenuation problem, when characteristics of
absorber and thewr configuration is known, can
be considered as special case. Motion of basic
system can influence motion of system A. In
some transportation problems, followmg prob-
lem can be formulated :

i Let lhp basic system have muul state
19,2 (ro) Z (rU) and final state 11,2’ (1), (r,)
States should be changed by action of forces
F; € U with restricted behavior of system and
optimality conditions [ 1,2,3] :
Jj() 2,2, 7, 1)dt (3.8)

,U

Jo :g[ (’l “ ’l
This problem can be formulated in following

form :
J (FU) min J,(F),
v Fellp o(F)

J](Q,Ff))s I)|,‘12(Q,F“)S Dy

(3.9)

Functional (3.8) form, in practical problems,
depends on optimality demands (minimum time
of motion, minimum consumption of energy,
etc.). Problems (1-5) represent basic forms in
optimal attenuation problems, and some addi-
tional conditions can be added. It should be
noted, that in general case of (3.1), following
problems can also be formulated :one ol func-
tionals can be minimized and others should be
restricted, or more functionals can be minimized
and others should be restricted.

4. METHODS OF SOLUTION OF OPTI-
MAL ATTENUATION PROBLEMS




Dilficulty and varicty of given problems do
not allow general method of their solution to be
[ormed.Problems | and 2 in some cases can be
solved by using maximum principle [2], or as
classic extremal problems. Difficulties in their
solutions arc caused by complexity of systems
with more degrees of [reedom. That is why sys-
tems with onc degree of freedom of attenuated
body are considered in most references. Prob-
lems 3 and 4 belong the type of game theory
problems. although there are other methods of
solution [4]. Problem 5 represents problem of
optimal controls. They can be solved by using
methods based on maximum principle.

5. IMPACT AND OPTIMAL
CHARACTERISTIC OF ABSORBER

Let, during the motion, basic system be ex-
posed to action of external forces in following

way :
0 r<t”
Fr={F() . <t<st +1 (5.1)
0 A3t T
and impulses be :
L4t
li= [ F(r)dr (5.2)

with finite values for t— 0. By intcgration of
cquations (1.4) in interval II*.r* + 1], duc to
finity of function Qg and derivatives of kinetic
and potential energy, for T — 0, it follows :

JdT JdT =1
52—' a5 - 9z o !
‘ L (5.3)
o T 3 JdT -0
e . O
J l*+r 72X "

Il immediately before the impact, state of ba-
sic systcm was zi(r*).zﬂi(f*), and system was in
2% () =10,
R (r*) =0 , only system velocitics were
changed intime 7 — 0 ,i.e.:

relative cquilibrium, 1.c.

if* if*
Z\t +r):z(r )

, ‘ (5.4)
gl * Lif*
Z(t +T>¢4. <f )

Velocities 2/ (¢"+7) and #%(t"+71) are
determined from equations (5.3). If we take that

.t”(f*+r)¢()

* . . i . .
I +7T =g, lor [urther system motion following
cquations are considered :

d|dT aT dTl

— o i e ES iy

de{l oz ) a7 dz!

' (5:5)

d| aT dT dTl )

- e rI+Q0((x,_>c)

de| 9x Jdx dx
with initial conditions :

t,",i[ =zf,*it :2-:1’

01 < (0) 01 < (0) 0 (5.6)

i bl ol
x(ty)=xp, ¥ (1,) = %,

System A, by acting ol impulse, gets relative
velocity x§ . Therefore it is advisable that ab-
sorbers have elastic and dumping propertics
(2.1). In that case motion of system can be os-
cillating, and estimations of relative displace-
ment and absolute acceleration of system have
more than one local maximum. If those func-
tions have maximum in instants t;, then J 1is

corresponding functional :

J = max (.I)tI (J) H<t <. (BT

[

In numcrous practical problems, due to dis-

sipative action ol absorber, it is functional (J), .
1

When all functionals arc determined, corre-
sponding instants should be analyzed. Among
them it should be chosen one which is corre-
sponding to maximum value of functional. It
represents the boundary of time interval in which
optimal characteristic of absorber should be de-
termined.

Let us illustrate impact attenuation with fol-
lowing example (fig.2) :

o




~where z is coordinate ol body O, x is coordi-
nate of body A, [ is impulse of impact, M is
mass of body O and m is mass of body A. In in-
stant of impact body was at relative rest x* =0
and body O was moving. Alter impact body gets
relative velocity xg = %VI . Differential equa-
tions of motion of system alter impact are:
Mz+m(Z+5)=0
m(Z+ %)= 0(x,x).
Let the characteristic of absorber be linear,
1
O(x, %)= —cx—bhx, (5.9)
Then determination of characteristics 1s re-
duced on determination ol constant parameters

b and c. Let:
H(Q)= max |x(r),

te[(),oo)

Jn = ¢
2(0) el

(5.8)

(5.10)

cx + b.\"|

Let fy <ty <ty<.. are instants in which
function |x(r)] has local maximum, then, due to
energy  dissipation,  |x(r)|> |x(r)|>..., and
Jy=|x(rp)]. Let in instant /21 function
|Q(.x,.\")|=’c‘.x'+/).\”’ have local maximum. It ex-
ists  sugh  instant 1" €l0,n] that is
[A\‘(r')
()] > ("), and :

lex () +bi(1")| > ex(t7) +bi(T)

:|.x(r’)]. Due to dissipation, it is

A (5.11)

: § k
It means that there exists mstant 1 €[/, 1]

in which function IQ(.\',.&‘)‘ has maximum, 1.c. :

o= c.x(r*)+/).t(r*)‘, (5.12)

In that way, optimal attenuation problem is
considered m interval [y, f]. On base (5.8) and
(5.9) we have differential equation :

M +m
y=———(cx+bx (5.13)
mM ( )

with boundary conditions :

@

t, =0, x(t,)=0, ,t(r(,):—A'Z/, () =0.(5.14)

5.6

Quantities x(r) and Xx(r) arc positive into
interval [0,1;] (x(#1) =0), and functionals (5.10)
have following form :

Ji(e,b) = x(1y), Jo(e,b) = max (cx +bx),(5.15)
re0,1]

In this case following problems can be for-
mulated :

L x(#1) = min, max (cx +bi)< Dy (5.16)
¢,b 10,11

2. max (ex+bi)— min,  x(1)< D(5.17)
re[0,n] c.b
In monograph [S] problem 2 oi this example
1s solved, and following optimal solutions are
obtained :

re

¢, =0.361 'Y‘t) b, =~ 048122 (5.18)
l)l‘- D

Same solutions are obtained by authors of this
paper, by solving given example as optimal control
problem with constant parameters [6], but with

. M+m . .
condition ———— = 1. Therefore, solutions (5.18)
Mm
L " . +m
should be multiplied with factor .
Mm
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