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Abstract: The bucket wheel excavator boom is modeled as elastic body with infinite
great number of degrees of freedom, and the analysis of its oscillatory behavior is
considered. The process for solving the corresponding partial differential equations
and for setting the frequent equation is explained. The non-linear transcendent
equation is solved by symbolic “MATHEMATICA” , and the process for solving the
problem itself, is exposed in details. The effect of changing the inclination angle, of
the rope system for the boom suspension, on the eigenvalues, is analyzed.
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INTRODUCTION

The analysis of the dynamic behavior of the bucket
wheel excavator in the working conditions include
the setting and the solving the small oscillations
differential equations (Bonkos and Yepxacos, 1969),
but primary consider the determination of the
eigenvalues and the corresponding mode shapes.
The most sophisticated models and their solutions
are given in dissertations (Petkovié, 1990. and
Bosnjak, 1995.), with the analysis of the bucket
wheel excavator linear oscillations. In that analysis
the bucket wheel excavator is considered as
mechanical system with finite number of degrees of
. freedom. This paper presents considered as the
addition to that study, and refer to the boom
oscillations in the vertical operating plane, whereas
the boom is modeled as elastic body with infinite
number of degrees of freedom. In the first part of
this paper, the dynamic model of the bucket wheel
excavator boom, taken from the monograph
(Petkovi¢ and Ostric, 1998.), is explained. In the
second part, the setting of mathematical model, as
the system of differential equations of the multi-
span beam support transversal oscillations and the
modal equation from the boundary condition, is
performed. The process for determination of the
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modal equation is totally defined, theoretically,
(Ba6akos, 1958., Rao, 1995.), but its solving for the
special cases can be very difficult. The modal
equation is transcendental, and the trigonometric
and hyperbolic functions are present. This is not
the case for the model with the finite number of
degrees of freedom, where the modal equation is in
polynomial shapepowered polinom. The new
computer routines enable the determination of the
eigenvalues of the elastic bodies. Such a routine is
the symbolic interpreter “MATHEMATICA”
(Volfram,1988.), and its application in solving the
modal equation is shown in the third part of this
paper. In the scope of considered problem, the
effect of changing the inclination angle of the rope
system for the boom suspension, on the
eigenvalues, is analyzed.

1. DYNAMIC MODEL OF THE ROTOR
EXCAVATOR BOOM

The dynamic model of the rotor excavator boom
(Petkovié and Ostri¢, 1998.), which oscillates
merely in one plane, is given on Fig.1:
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where the model parameters are defined as:

- Is = 52 m, span length of the boom,

- la = 12 m, the length of the cantilever part of the
boom,

- h = 45 m, eccentric position of the boom
connection,

- EI=8-10'"Nm?, the flexural rigidity of the boom
cross section of the span and the bracket parts,

- ¢"=8-10°N/m, reduced stiffness of the rope

system for the boom suspension,
- pA=3000kg/m, distributed boom mass (the

product of the density and the cross sectional area),
- m = 200000 kg, mass of the rotor device,
-, the inclination angle of the rope system for

the boom suspension, which effects on the
eigenvalues will be considered in this study.

2. MATHEMATICAL MODEL

Solving the partial differential equations for the
transversal oscillations for the span of the boom:
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the following solutions are obtained:
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Yo(ze,t)=Z(z, )T(t)

3)
Ya(Zast)=Z,(2, )T(1)

where are:

Z(z;)=C,Ch(kz; )+ C,Sh(kz; )+ C; cos(kz, )
+C sin(kz, ),

Z,(z,)=D;Ch(kz, )+ D,Sh(kz, )+ D; cos(kz, )
+ D, sin(kz, ),

T(t)=Acos(wt)+B sin(wt ),
w=ck®T(t)=-0’T(t).

(4)

Before the boundary conditions are formulated, it
was necessary to determine the force in the rope
system for the boom suspension, as:

F=cA=c"[y,(0,t)sin f+hy.(0,t)cos B]  (5)

and, also, the corresponding transversal force and
flexural momentum in the cross sections, as:

Fy= "Ely:(ls:t))xpﬂ = —Ely:(o,t)),F,_; = -Ely:(la’t ))
Mfl = —Ely:(ls,’));MfZ = —Ely;'(o’t))
(6)

which are shown on Fig. 2.
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The deflection, in the suspension point B, is equal
to the zero value:

ys(0,t)=0 (7
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Fig. 2.
as well as for the momentum :
Mg, =M g, +hF cos . (12)

as well as the flexural momentum:

~Ely.(0,1))=0. (8)
The deflections, from the both sides of the point of
connection of the span and the centilever parts of
the boom, are equal:

y,\'(lsyt):ya(olt) (9)
as well as the inclinations:

Yi(lg,t)=y,(0,t) (10)

From the equilibrium of the system of forces
applied on the bracket, the following can be

The flexural momentum in the node O is equal to
the zero value:

~EIy'(l,,t))=0. (13)

but when the rotor is in motion, the following is
valid: '

m.'y.a(la)')=— t3 (14)

When (3)-(6) are input in the boundary conditions
(7)-(14), the homogenous system of equations will
be obtained, with  unknown  quantities
C,;,D;,i=123,4. Besides, it is determined that
C,=0,C;=0 , and that the values for
c,,C,,D,;,i=12,3,4 have to be non-trivial (the

obtained: .
determinant of the system has to be equal to the
F,,+F sin B=F,, (11) zero value):
|’ Ch(klg ) cos(kl) 0 -1 0 -1
Sh(klg ) sin(klg, -1 0 -1 0
. ¢ hk cos B sin B ., ¢ hk cos B sin
_EICh(KL, ) EIK® cos(kl,) < sin® B ; ¢ sin’ B 3
+Elk - Elk -0 (15)
-c'h i . -c'h ] ; -
—EIkZSh(kl,) EIk? sin(kl, ) e oty —c"kh? cos? B e ko feing —c"kh? cos? p
+EIk* - EIk?
0 0 Ch(kl, ) Sh(kl, ) —cos(kl, ) —sin(kl, )
mkc?Ch(kl, ) mkc?Sh(kl,)  mkc® cos(kl, ) mke® sin(kl, )
0 0 +EISh(kl,) +EICh(kl,) + Elsin(kl,) —Elcos(kl,)
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3. SOLVING THE MODAL EQUATION BY
USING THE “MATHEMATICA”
INTERPRETER

If the determinant (15) is developed, very
complicated transcendent equation with unknown
value k, will be obtained. If we bring the model
parameters into the equation, the additional
problem will appear, because the values of
different exponents are present on the individual
intervals. Since the equation is not a polinom, the
roots can’'t be determined by using the simple
commands (e. g. “SOLVE™, Volfram, 1988.), thus,
it is necessary to analyze the function on the small
subintervals, to localize the roots, and to use some
numerical methods for its solving. Since k is
positive value, the analysis refer to the values
greater than zero. Such an analysis can be obtained
by plotting the modal (15), (i. e. by using the
command “PLOT”). When the root is localized,
the corresponding numerical method will be used.
In this case, that will be the command
“FINDROOT”. This process is based on the
tangent method, so the initial point have to be
chosen for the case when the function and its
second derivate have the same sign, which can be
determined from the graphic. The process for

determination of the first frequency for =407,
with the basic commands, is given on Fig. 3.

Plot[DD,{k,0,0.04}]
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Graphics

FindRoot[DD, {k,0.025,0.024,0.026}]
{k -> 0.0246831}

omegal = 5164*(0.0246831)72
3.1462

Fig. 3.

In the further analysis, from Eq.(1) and (4), the
other roots and frequencies can be determined, as
well. Only the first couple of frequencies are
important for the study. This process can be
repeated for different values for the incliunation
angle of the rope system for the boom suspension.
as well. In table 1, the values for the first three
eigenvalues,. for different angles B, are given.

Table 1.

B [°] wl 2 [rad/s] | 03
[rad/s] [rad/s
15 1.524 13.507 50.890
20 1.886 13.487 50.899
30 2.561 13.472 50.945
40 3.146 13.496 50.024
50 3.621 13:557 50.127
60 3.971 13.698 50.240
70 4.190 13757 50.351
80 4.279 13.870 50.446

CONCLUSION

If the energy method was applied on the bucket
wheel excavator boom model with finite number of
degrees of freedom, it can be concluded as
(Petkovi¢ 1990.), that in the basic mode shape, in
the excavator vertical operating plane (with its
basic eigen value @, ), the greatest part of the

potential energy is accumulated in the system for
the boom suspension. Also, the eigenvalues w,

andw;, correspond to the transversal oscillations

of the boom itself. The analysis of the obtained
results, from table 1, shows that the change in
inclination angle of the system for the boom
suspension, effects mostly on the system itself.
Therefore, the less the angle for the boom
suspension A is, the lower the eigenvalues w,; are,

which mean that the system is more deformed, i. e.
its stiffness is smaller in the corresponding
direction. Analogous, the greater the inclination
angle for the boom suspension corresponds to the
greater stiffness. The small differences between the
eigenvalues ®, and w; for the different angles

B, show that the transversal oscillations slightly

depend on the system for the boom suspension.
The first three basic mode shapes are shown on
Fig. 4. a, b, c. Parallel with mentioned calculation,



the results are confirmed by using the computer
program for the finite elements analysis NISA II,
and the equal results are obtained.
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