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Abstract. A mechanical system consisting of rigid bodies and material particles, of which 
some particles are with variable masses, is considered. Laws of variation of the masses of 
the points and relative velocity of particles separating from the points are well-known. The 
system is moving in an arbitrary field of known potential and nonpotential forces. Applying 
Pontryagin’s Maximum Principle and singular optimal control theory, brachistochronic 
motion is determined. A two-point boundary value problem, due to nonlinearity of equations 
in a general case, is needed to be solved using some of the numerical procedures. Here the 
Shooting method is used, where the missing boundary conditions are chosen so as to be the 
physical variables (velocity and mass). The field where they are found can be approximately 
estimated, which is not the case with the conjugate vector coordinates being of purely 
mathematical nature. The paper also presents the manner of brachistrochronic motion 
realization without the action of active control forces. It is realized by subsequent imposition 
to the system a corresponding number of independent ideal holonomic mechanical 
constraints. The constraints must be in accordance with the previously determined 
brachistochronic motion of the system. The method is illustrated by an example of 
determining the brachistochronic motion of the system with three degrees of freedom and 
method of its realization. The system consists of one rigid body to which two points of 
variable masses are attached, where the system is moving in a vertical plane. 
Brachistochronic motion is realized by the help of two ideal holonomic constraints. 

 
 

1. Introduction 
 
The problem of a brachistochronic motion of mechanical systems is a very topical area of 
research as evidenced from literature cited. Research is inspired not only by the expansion 
of existing fundamental knowledge in this area, but also by various engineering 
applications (see e.g., [1-7]). Thus in [8-16] the brachistochronic motion of a particle in the 
presence of resistance forces (forces of dry friction, viscous friction) is analyzed, while in 
[6,17,18] the brachistochronic motion of a particle on a surface is considered. In [18] it was 
shown that results from [8,10,13] represent special cases of the brachistochronic motion of 
a particle on a surface. Note that in [6] the problem of optimization of a bobsled travelling 
on a path was solved as the problem of a brachistochronic motion of a particle on a surface, 
whereas [7] considers the brachistochrone problem for a steerable particle moving on a 1D 
curved surface 
with application to ski racing. The next important group of references comprises the papers 
that consider the problem of brachistochronic motion of a rigid body [1-3,5,19] and system 
of rigid bodies [21-23]. Furthermore, in [24-27] the brachistochronic motion of mechanical 
systems with nonholonomic constrains is analyzed. Also, a certain number of references 
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can be singled out [14,28-31], where the solution of the classical brachistochrone problem 
(cycloid) was used with the aim of testing various numerical methods in solving nonlinear 
engineering optimization problems. References [32,33] consider the problem of 
brachistochronic motion of a variable mass particle. 
This paper considers the mechanical systems that consist of constant-mass rigid bodies and 
variable-mass particles. It is started from the assumption that such mechanical systems are 
moving in the arbitrary field of known potential and nonpotential forces. Pontryagin’s 
Maximum Principle [34] and singular optimal control theory [35] is applied in solving the 
brachistrochrone problem. Considerations in this paper represent a continuation of research 
commenced in paper [27]. 
  

2. Problem statement 
 
The motion of mechanical system with n -degrees of freedom within which there are   
variable-mass particles is considered. The system configuration is determined by 

generalized coordinates )nq,,,( 21 qqq  . Laws of variation of the masses are well-

known: 

 ,,1),(   tmm                            (1) 

as well as relative velocity of particles separating from the points 

 .,,1,),,( 
  tqqvv relrel                    (2) 

Since the system motion is under the imposition of holonomic scleronomic mechanical 
constraints, kinetic energy has the form 

 njiqqaT ji
ij ,,1,,

2

1                       (3) 

where covariant coordinates of metric tensor, taking into account (1), are 

 .,,1,,),( njitqaa ijij                             (4) 

Let the system move in the field of known potential forces with potential energy 

 ),( tq                                                                      (5) 

and let the system be also acted upon by arbitrary known nonpotential forces, whose 
generalized forces are  

 .,,1,),,( nitqqQQ w
i

w
i                   (6) 

Differential equations of motion of such variable-mass system in the form of Lagrange’s 
equations of the second kind [36] have the form  

 c
ii

w
iiii

QQQ
qq

T

q

T

dt

d











 var


                      (7) 

where generalized forces  have the following form var
iQ
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 ,)(),,(
1

var
i

rel
i

q

r
vvmtqqQ

















                              (8) 

while  represent generalized control forces. Their determination represents an essential 

part of solving the problem of brachistochronic motion of the mechanical system. They can 
be generalized active forces and/or reactions of constraints, depending on the manner of 
brachistochronic motion realization. In accordance with the original postulates of 
brachistochronic motion [20] their power equals zero  

c
iQ

 .                                             (9) niqQ ic
i ,,1,0  

Thus based on (3), (7) and (9), there exists linear dependence of the second derivatives of 
generalized coordinates  

 .,,1,,var njiqQQ
qq

T
qaqqa i

i
w
iii

j
ij

ij
ij  



















         (10) 

Let the initial values of generalized coordinates and total mechanical energy of the system 
be specified  

 000000000 ),(),,(,)(,0 EtqtqqTqtqt                            (11) 

as well as terminal values of generalized coordinates at unknown instant of time  1t

 .)( 11 qtq          (12) 

Solving the problem of brachistochronic motion of a variable-mass mechanical system, 
whose differential equations are (7), consists in determining the control forces 

and the system motions corresponding to them, so that the system transfers for 

the shortest time from the state described by (11) into the state described by (12).  

)(tQQ c
i

c
i 

 

2. Brachistochronic motion as a problem of optimal control 
 
Linear constraint (10) allows for another derivative of generalized coordinate to be 
expressed via the others. Let it be, without limiting the generality 

                                                      (13) 1,,1  nsqq s
s

n 

where: 

 ,),,(

var

i
in

i
i

w
iii

j
ij

qa

qQQ
qq

T
qa

tqq
























  

 .1,,1;,,1,,),,( 


 nsnji
qa

qa
tqq

i
in

s
is

s 

  (14) 

Introducing the control 
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                                   (15) 1,,1  nsqu ss 

differential equations of the first kind in the problem of optimal control can be, 
incorporating the rheonomic coordinate, written in the form 

                             (16) .,,1, 1 s
s

nssnii uyuyqyq   

Taking into account the form of functional in a time minimization problem 

                                                                               (17) ,
1

0


t

t

dtJ

In solving the problem by the help of Pontrryagin’s Maximum Principle [34], it is necessary 
to form Pontryagin’s function  

1,,1,,,1,)( 10   nsniuuyH n
s

sn
s

s
i

i         (18) 

where 0 , i , ,1n and i  are coordinates of the conjugate vector. A costate system of 

differential equations corresponds to them  

 

1,,1,,,1,

1111


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
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








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
















nsniu
yyy

H

u
qqq

H

u
qqq

H

s
i
s

iniii

s
n

s
nnnn

s
i
s

inii













. (19) 

Pontryagin’s function (18) depends linearly on the control 

                                                  (20) 1,,10  nsuHHH s
s 

In the optimal control theory such case is referred to as singular [35] because the 
corresponding condition of a maximum principle   

 1,,10 



nsH
u

H
ss

                                                  (21) 

does not allow for determining the optimal controls. Instead, one obtains a constraint 
between parts of the conjugate vector coordinates   

 1,,1  nssns                                                    (22) 

In order to determine optimal controls, it is necessary to further differentiate the relation 
(21) with respect to time in accordance with (16) and (19). Applying the formalism of 
Poisson brackets [36] 

       1,,1,,0,,, 0  nzsuHHHHHHH z
zssss           (23) 

and taking into account the fact that for multidimensional singular controls [35]  

1240



 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 M2-15 

 
   1,,1,,0,  nzsHH zs                    (24) 

it is obtained that 

   1,,1,0, 0  nsHH s                         (25) 

From (25), taking into account (22), another constraint between the coordinates of 
conjugate vector can be established 

 1,,1),,,,(  nstyq nnss                                     (26) 

Further differentiation yields: 

              (27) 1,,1,,0}},,{{}},,{{ 000  nzsuHHHHHH z
zss 

Limiting to the singular controls of the first order [35], the linear system of equations (27) 
using the relations (22) and (26) yields optimal controls 

 1,,1),,,,,(  nstyquu nn
ss                                 (28) 

Substituting (28) in (16) and (19) one obtains the system of (2n+2) differential equations of 
the first kind in normal form 

 

nityq

tyq

tyqyy

tyqqq

nnnn

nnnn

nn
ii

nn
ii

,,1),,,,,(

),,,,,(

),,,,,(

),,,,,(






















                                             (29) 

where differential equations, whose solutions are (22) and (26), were eliminated from (19). 
In a general case, due to nonlinearity (29), a two-point boundary value problem should be 
solved by applying some of the numerical methods. If the Shooting method is used [37], it 
is necessary to adjust the choice of the missing boundary conditions such that one can 
approximately estimate their field. In this regard, it should be avoided, whenever it is 
possible, having any of the coordinates of conjugate vector among them, because they are 
of purely mathematical character and as such difficult to estimate the field. Therefore, it is 
suitable here to perform backward numerical integration in the interval . At terminal 

point the maximum principle can be utilized for the case of unspecified interval  

],[ 10 tt

],[ 10 tt

                                                     (30) 0)( 1 tH

Since final velocities are not specified, nor is the rheonomic coordinate , it 

follows from the transversality conditions that: 

)( 1ty i )( 1
1 tq n

 0)(,,,1,0)( 111   tnit ni                                 (31) 

Taking into account that 10   (according to the maximum principle 00  const ) as 

well as the relations (12),(18),(26),(30) and (31), it is possible to establish in the analytical 
form the dependence 

 ),()( 111 tyt nn                                       (32) 
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which, along with the fact that  

 0)( 1 tn                                        (33) 

completely excludes the necessity to estimate the fields for )( 1tn    and   )( 1tn in 

backward shooting procedure. 
The backward shooting procedure consists of choosing n+1 values of generalized velocities 

and duration  of the time interval , so that n+1 values (11) of generalized 

coordinates and mechanical energy are shot.  

)( 1tyi
1t ],[ 10 tt

There remains the discussion on transversality conditions at the initial point: 

  .    (34) nitqttyttqt n
n

i
i

i
i ,,10)()()()()()( 0

1
010000  

 

Based on specified values (11) it follows 

 . (35) nijtytytatqtq ii
ij

ni ,,1,,0)()()(,0)(,0)( 0000
1

0   

Substituting (14) in (22), it is obtained  

  .      (36) njitytytattyt ij
ijn

i
i ,,1,)()()()()()( 000000  

Directly substituting (35) and (36) in (34), it is evident that transversality conditions at the 
initial point are satisfied. Numerical solving of the system (29) yields  

 )(),(),(),( tttqqtqq nnnn               (37) 

and based on (13), (28) it is also obtained 

 )(tqq                                                 (38) 

which enables too final determination of the control forces (7) 

                                           (39) )(tQQ c
i

c
i 

Control forces (39) can be realized in various ways, combining active forces and/or 
reactions of constraints. The most approximate to the original brachistochrone problem is 
realization of motion by subsequent imposition to the system a corresponding number of 
independent ideal stationary constraints, without the action of active forces. The constraints 
must be in accordance with the brachistochronic motion (37).  
Let the ideal holonomic stationary independent constraints, in accordance with (37), be 
imposed to the system 

 1,,1,1,0)( 















 nsn
q

rankq
i

s
s         (40) 

In that case, generalized control forces read 

 1,,1;,,1, 



 nsni
q

Q
i
s

s
c
i              (41) 
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where from, if necessary, based on (37), (39) and (40), multipliers of constraints can be also 
determined 

 1,,1)(  nstss                                        (42) 

More information on such manner of control can be found in []. The form of constraints 
(40) is most often chosen to be performed by the simplest construction.  One of the manners 
for the case of motion control of mechanical systems, especially of a rigid body, is 
imposition of guides to the specified number of particles whose motion is determined by 
numerical relations.  
 

3. Example 
 
The rod AB of mass m, of length  and radius of inertia 2 Czi  moves in a vertical plane, 

where the Oy axis is directed upward (see Fig.1).  

 

Figure 1. Variable-mass mechanical system 
 
At both ends of the rod there are two variable-mass points, whose masses change according 
to the Law  

 ktmtmtm BA  )()(                                      (43) 

where . The particles are separating by relative velocities of constant 
intensities  

0 constk
(  constv )0

                                                          (44) vvv A
rel

B
rel 

It is needed to determine the brachistochronic motion of the system and present its 
realization without the action of active forces if at the initiation of motion (11) is 

specified: 

)0( 0 E

  ,0)()()(,0 0
3

0
2

0
1

0  tqtqtqt

x

V
A

y

A0

A

C0

O

B0

B

C(q ,q )
1 2

V
B

rel

g
rel

q
3

m
A

m
B
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        0

2

0
32

0
22

0
1 )()()(

2

3
Etqtqtq

m
  ,                             (45) 

while at the end of motion (12) 

 
2

)(,)()(?, 1
3

1
2

1
1

1


 tqtqtqt                             (46) 

Differential equations of motion (7) of this system are: 

                      (47) 
c

c

c

Qkvqktm

Qgktmqqkvqktm

Qqqkvqktm

3
32

2
332

1
331

)3(

)3()sin(cos)3(

)sin(cos)3(













so that the relations (14) obtain the form 

 
  

32

2

232

1

1

3123213
332

,

,)(sin)(cos
1

q

q

q

q

qqqqqqqg
q ktm

kv












 
          (48) 

The problem is solved for the following numerical values of the parameters: 

 
s

kg
k

s

m
vJEkgmm 1,1,30,1,1 0  . (49) 

The missing values of boundary conditions are: 

 

ststq

s

m
tq

s

m
tq

532857.0,94686.2)(

,30177.1)(,14877.1)(

1
1

3
1

2
1

1
1







 . (50) 

 
The trajectories of points A , B , and C  are shown in Fig.2.   
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Figure 2: Trajectories of points A, B, and C 

 

4. Conclusions 
 
This paper is a continuation of research from [27] for the case of brachistochronic motion 
of a variable-mass system. Like in [27], the manner of motion control is presented without 
the action of active forces. The novelty in this paper is the numerical solving procedure for 
the two-point boundary value problem of maximum principle, based on shooting method, 
where costate variables were avoided as the missing boundary conditions. The number of 
missing boundary conditions is the least possible, such as n generalized velocities and 
time , which yields  conditions. Their values can be approximately estimated. 1t 1n
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