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ABSTRACT 

 
The problem of brachistochronic motion of a heavy uniform ball rolling 

without slip along the upper outside surface of an imperfect rough stationary 

sphere, is solved. The control forces are located in the tangential plane, and their 

total power equals zero. In the first part of the paper the determination of the 

brachistochronic motion is solved as the problem of optimal control using 

Pontryagin’s maximum principle. This solution corresponds to the motion of the 

heavy ball along a perfect rough sphere. The second part provides the case when 

the constraint between the sphere and the ball is imperfectly rough. Here, the 

problem of optimal control is formulated in such way that the tangential 

component of the reaction of constraint is taken for the control, with the 

restriction resulting from Coulomb’s laws of sliding friction. The problem thus 

formulated belongs to the theory of singular optimal controls, and the solution 

that satisfies the Maximum principle consists of a singular part and a non-

singular part.  
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1. Introduction 

 

The classical brachistochrone problem of the heavy point in a vertical plane has 

experienced application to various classes of mechanical systems over the past 

years. Among the contemporary works, the doctoral dissertation [1] should be 

noted, which proves the actuality of the problem even today. This recently 

defended dissertation reveals that the problems of the brachistochronic motions 

involve the areas not investigated yet. The dissertation provides a very good 

survey of the results which include several of our papers as well. In creating the 

task of optimal control, as we do in our papers, some of the reaction of 

constraints is taken for the control. The same has been done in [2]. The 

brachistochronic motion of the heavy point under the action of the sliding 

friction force was also the subject of the research in both [3] and [4], where 

bilaterally limited normal reaction of the constraint was studied. 

In [5] both the classical brachistochrone problem and the unrestrained 

brachistochrone problem were formulated within the framework of the optimal 

control theory. Also, the extension to the cases of the brachistochrone problem 

for a rolling rigid body in a vertical plane, as well as the three-dimensional-

minimum-time optimal problem for a disk rolling on the interior surface of a 

hemisphere was given. 

Here, the research focuses on those brachistochrone problems of the 

nonholonomic mechanical systems where the reaction of the nonholonomic 

constraint is limited, and the paper is a continuation of the authors’ earlier 

research studies.  

In [6] the lateral reaction of the constraint (|𝑅𝜂| < 𝑁𝑏) of the Chaplygin sleighis 

bilaterally limited (Fig. 1), and the brachistochronic motion is realized by 

subsequent imposition of an ideal holonomic constraint to the mass center C. 

This type of restriction was considered in a well-known work by Caratheodory 

[7]. 
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Fig.1 [6] Brachistochronic motion of the Chaplygin sleigh 

 

The brachistochronic motion is realized in such way that on some parts the 

constraint reaction is on one of its limits 𝑅𝜂 = ±𝑁𝑏 and a singular part is in the 

middle of motion, so that angular acceleration, depending on the angle, is given 

in Fig. 1c. 

In the cases when the disks are rolling along horizontal surfaces Coulomb’s 

laws of sliding friction limit the maximum possible horizontal components of 

the constraint reactions.  

Paper [8] considers the brachistochronic motion of a vertical disk along a 

horizontal plane. Motion is controlled by three couples and the restrictions arise 

from the condition that slip will not occur at the contact point of the disk and the 

surface. Figure 2b) shows change in the horizontal components of the disk 

constraint reactions in the numerical example, where a non-singular part is in 

the middle of the interval of motion. 

Previous research was extended in [10] to a more complex system of bodies, the 

simplified model of a vehicle [9], Fig. 3. Wheels slip is prevented based on the 

restrictions following from Coulomb’s laws of friction. For real values of 

Coulomb’s coefficient of friction, in this case too, one obtains non-singular 

parts of the brachistochronic motion, where a horizontal component of the 

reaction force is on its limit. 
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a) 

 
b) 

Fig. 2 [8] Brachistochronic motion of a vertical disk 

 

 

 

𝜇2(𝑡)𝑁2 = |𝑅𝐴| < 𝐹2
𝑓𝑟
= 𝜇𝑁2,    𝜇1(𝑡)𝑁1 = 𝐹𝑏 = √𝑅𝐵

2 + 𝐹1
2 < 𝐹1

𝑓𝑟
= 𝜇𝑁1 

 

Fig. 3 [10] Brachistochronic motion of a simplified vehicle model [9] 

 

The major goal of this paper is to determine the brachistochronic motion of the 

heavy ball rolling along a real rough sphere. For various real materials that the 

ball and the sphere can be made of their contact cannot be considered perfectly 

rough. In real rough contact the quotient of the intensity of horizontal and 

vertical component of the constraint reaction must be lower than the real value 

of Coulomb’s friction coefficient. It is necessary to apply the procedure similar 

to that for the rolling disk [8]. 
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2. Problem formulation 

 

Observe the motion of a heavy uniform ball rolling without slip along the upper 

outside surface of an imperfect rough stationary sphere (Fig. 4) 

 

 
Fig.4 Heavy ball rolling without slip along the upper outside surface of a 

stationary sphere(𝑂𝐶̅̅ ̅̅ = 𝐿,   𝑃𝐶̅̅ ̅̅ = 𝑟) 
 

The control forces 𝐹2 and 𝐹3 are located in the tangential plane of the other 

sphere, along which the center of the ball is moving, and their total power 

equals zero in the brachistochronic motion of the mechanical systems. Thus, 

during motion the total mechanical energy is maintained. The initial value of the 

mechanical energy is specified, and the initial and final position of the ball’s 

center is defined by the spherical coordinate system angles 𝜑 and 𝜃, the ball 

orientation (Euler angles) not being considered in this problem. Such 

mechanical system is nonholonomic, and dynamic equations in this paper are 

derived using the general theorems of mechanics. 

The theorems on the motion of the center of mass and the change of the kinetic 

moment for the center of mass read: 

 

𝑚�⃗�𝐶 = �⃗�𝑅
𝑆,         �̇⃗⃗�𝐶 = �⃗⃗⃗�𝐶

𝑆,                                                                                   (1) 
 

where the velocities and accelerations of the mass center in this coordinate 

system are: 

 

𝑣𝐶1 = 0, 𝑣𝐶2 = 𝐿�̇� 𝑐𝑜𝑠 𝜃 , 𝑣𝐶3 = 𝐿�̇�

𝑎𝐶1 = −𝐿(�̇�
2𝑐𝑜𝑠2𝜃 + �̇�2), 𝑎𝐶2 = 𝐿(�̈� 𝑐𝑜𝑠 𝜃 − 2�̇� �̇�𝑠𝑖𝑛 𝜃),

𝑎𝐶3 = 𝐿(�̈� + �̇�
2 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃),

                   (2) 

 

and dynamic quantities in expressions (1) are given by expressions: 
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�⃗⃗�𝐶 = 𝐽�⃗⃗⃗�,   𝐽 =
2

5
𝑚𝑟2,

�⃗�𝑅
𝑆 = 𝑚�⃗� + �⃗⃗⃗� + �⃗�2 + �⃗�3 + �⃗⃗�2 + �⃗⃗�3,

�⃗⃗⃗�𝐶
𝑆 = 𝑟𝑅3𝑒2 − 𝑟𝑅2𝑒3.

 (3) 

 

Nonholonomic constraints are obtained from the condition that there is no slip 

at the contact point: 

 

�⃗�𝐶 = �⃗⃗⃗� × (𝑟𝐶 − 𝑟𝑃)    ⇒     𝐿�̇� cos 𝜃 = 𝑟𝜔3  ∧   𝐿�̇� = −𝑟𝜔2, (4) 

 

where 𝜔𝑖, 𝑖 = 1,2,3 are projections of the ball’s angular velocity onto the 

movable coordinate system at point C (Fig. 4). 

Now, dynamic equations can be written in the form: 

 

−
𝑚𝑟2

𝐿
(𝜔2

2 +𝜔3
2) = 𝑁 −𝑚𝑔 sin𝜃 ,

𝑚(𝑟�̇�3 + 𝑟
2𝜔2𝜔3 tan 𝜃 𝐿⁄ ) = 𝑅2 + 𝐹2,

𝑚(−𝑟�̇�2 + 𝑟
2𝜔3

2 tan 𝜃 𝐿⁄ ) = 𝑅3 + 𝐹3 −𝑚𝑔cos 𝜃,
𝐽�̇�1 = 0,

𝐽(�̇�2 − 𝑟𝜔3
2 tan 𝜃 𝐿⁄ − 𝑟𝜔1𝜔3 𝐿⁄ ) = 𝑟𝑅3,

𝐽(�̇�3 + 𝑟𝜔2𝜔3 tan 𝜃 𝐿⁄ + 𝑟𝜔1𝜔2 𝐿⁄ ) = −𝑟𝑅2.

 (5) 

 

The total power of control forces in generalized brachistochrone problems 

equals zero [11]: 

 

𝐹2𝑣𝐶2 + 𝐹3𝑣𝐶3 = 0  ⇒   𝐹2𝜔3 − 𝐹3𝜔2 = 0, (6) 

 

so that from dynamic equations (5) the conservation of the total mechanical 

energy follows 

 
1

2
𝐽𝜔1

2 +
1

2
(𝐽 + 𝑚𝑟2)(𝜔2

2 +𝜔3
2) + 𝑚𝑔𝐿 sin𝜃 = 𝐸. (7) 

 

as well as the maintenance of the projection of the ball’s angular velocity onto 

the radial direction: 

 

𝜔1 = 𝐶1. (8) 

 

By introducing dimensionless variables: 

 

𝑟′ = 𝑟 𝑟⁄ = 1,   𝐿′ = 𝐿 𝑟⁄ = 3, 𝑡′ = 𝑡√
𝑔

𝑟
 , 𝜔𝑖

′ = 𝜔𝑖√
𝑟

𝑔
,

𝑁′ = 𝑁 (𝑚𝑔),⁄ 𝐹𝑖
′ = 𝐹𝑖 (𝑚𝑔)⁄ , 𝑅𝑖

′ = 𝑅𝑖 (𝑚𝑔)⁄ , 𝐸′ = 𝐸 (𝑚𝑔).⁄

 (9) 

 

in the text below, the label “prim” will be removed, and all expressions will be 

in dimensionless variables. 
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The laws of change in the control forces are of the dimensionless form: 

 

𝐹2 =
2

15
𝜔1𝜔2 +

7

15
𝜔2𝜔3 tan 𝜃 +

7

5
�̇�3,

𝐹3 =
2

15
𝜔1𝜔3 +

7

15
𝜔3
2 tan 𝜃 −

7

5
�̇�2 + cos 𝜃 ,

 (10) 

 

and the reactions of constraints are: 

 

 𝑁 = sin𝜃 −
1

3
(𝜔2

2 +𝜔3
2) =

17

7
sin 𝜃 −

10

21
(𝐸 − 𝐶1

2 5⁄ ),

𝑅2 = −
2

15
(𝜔1𝜔2 + 𝜔2𝜔3 tan 𝜃 + 3�̇�3),

𝑅3 = −
2

15
(𝜔1𝜔3 + 𝜔3

2tan 𝜃 − 3�̇�2).

 (11) 

Detachment angle (𝑁(𝜃𝑝𝑒𝑟𝑓.𝑟𝑜𝑢𝑔ℎ) = 0)for the case of perfect rough sphere 

and zero initial value of the angular velocity projection 𝜔1 onto the radial 

direction:sin(𝜃𝑝𝑒𝑟𝑓.𝑟𝑜𝑢𝑔ℎ) =
10𝐸

51
. 

 

Condition for non-slip occurrence based on Coulomb’s laws of sliding friction: 

 

𝑅 = √𝑅2
2 + 𝑅3

2 ≤ 𝜇𝑁. (12) 

 

The next section considers the brachistochrone problem as a problem of optimal 

control when the sphere is perfectly rough and there are no restrictions (12), and 

section 3 deals with the case of a real rough sphere, when given restriction must 

be taken into account.  

 

 

3. The brachistochrone problem for the case of perfect rough sphere 

 

Let us formulate the problem of optimal control that will be solved using 

Pontryagin’s maximum principle [12]. 

Let it be known at the initial moment: 

 

𝑡0 = 0, 𝜑(𝑡0) = 0, 𝜃(𝑡0) = 𝜃0, 𝐸(𝑡0) = 𝐸, (13) 

 

and let it be known at the final moment: 

 

𝑡𝑓 =?, 𝜑(𝑡𝑓) = 𝜑𝑓 , 𝜃(𝑡𝑓) = 𝜃𝑓 , (14) 

 

where: 

 

𝜃𝑝𝑒𝑟𝑓.𝑟𝑜𝑢𝑔ℎ < 𝜃𝑓 ≤ 𝜃0 <
𝜋

2
, 0 ≤ 𝜑𝑓 < 𝜋. (15) 

 

Differential equations of this problem of optimal control can be obtained from 

(4), where it has been taken that 𝐿 = 3: 
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�̇� = 𝜔1, �̇� =
𝜔3

3 cos𝜃
, �̇� =

−𝜔2

3
. (16) 

 

Energy integral (7) obtains the form: 

 

2𝜔1
2 + 7(𝜔2

2 +𝜔3
2) + 30 sin𝜃 = 10𝐸. (17) 

 
The optimal control problemis as follows: For the mechanical system, for 

specified differential equations(16) and initial (13) and end conditions (14), 

determine the motion of the system in minimum time while maintaining the 

energy integral (17).
 In order to apply the maximum principle, cost functional is formed:

  

𝑡𝑓 = ∫ 𝑑𝑡
𝑡𝑓
𝑡0

.                                                                                                       (18) 

 

Pontryagin's function: 

 
𝐻 = −1+ 𝜆𝜓𝜔1 + 𝜆𝜑𝜔3 (3 cos 𝜃)⁄ − 𝜆𝜃𝜔2 3⁄ +

+𝜌(2𝜔1
2 + 7(𝜔2

2 +𝜔3
2) + 30 sin 𝜃 − 10𝐸),

 (19) 

 

and costate system: 

 

�̇�𝜓 = 0,   �̇�𝜑 = 0,   �̇�𝜃 = −𝜆𝜑𝜔3 sin 𝜃 (3cos2𝜃)⁄ − 30𝜌 cos𝜃. (20) 

 

Transversality conditions are of the form: 

 

𝜆𝜓(0) = 0,   𝜆𝜓(𝑡𝑓) = 0. (21) 

 

Maximum principle yields the conditions: 
 
𝜕𝐻

𝜕𝜔𝑖
= 0   ⇒   𝜔1 = −𝜆𝜓 (4𝜌)⁄ ,

𝜔2 = 𝜆𝜃 (42𝜌)⁄ , 𝜔3 = −𝜆𝜑 (42𝜌 cos 𝜃)⁄ .
 (22) 

 

The final moment is indefinite so that: 

 

𝐻 = 0  ⇒   𝜌 = 1 (20(3 sin𝜃 − 𝐸))⁄ . (23) 

 

There is no rotation around the axis in the radial direction: 

 

(�̇�𝜓(𝑡) = 0 ∧ 𝜆𝜓(0) = 0 ∧ 𝜆𝜓(𝑡𝑓) = 0) ⇒ 𝜆𝜓(𝑡) = 0 ⇒ 𝜔1(𝑡) = 0. (24) 

 

On the brachistochronic motion, based on (11) and (20-24), the components of 

the constraint reaction are: 
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𝑁 = (51 sin 𝜃 − 10𝐸) 21⁄ ,   𝑅 = √𝑅2
2 + 𝑅3

2 = 2 cos 𝜃 7⁄ . (25) 

 

When the ball is rolling down, the angle is decreasing, the normal component of 

the constraint reaction 𝑁 is decreasing too, whereas tangential component 𝑅 is 

increasing, so that in term of the slip, the critical slip is at the end of motion. 

Now, the discussion on the possible values of the task parameters 𝜃𝑓 , 𝐸, 𝜇 can be 

conducted, where 𝜃0 = 1.5 

1. 𝑁 ≥ 0 ⇒ 𝐸 ≤ 51 sin 𝜃𝑓 10⁄  the point must be below the red colored 

surface in Fig. 5; 

2. 𝑅 ≤ 𝜇𝑁 ⇒ 𝐸 ≤ 3(17𝜇 sin 𝜃𝑓 − 2cos 𝜃𝑓) (10𝜇)⁄  the point must be 

below the blue colored surface; 

3. 𝐸 ≥ 3 sin 𝜃0 the point must be above the green colored surface because 

the initial kinetic energy is non-negative 

This means that the representative point (𝜃𝑓 , 𝜇, 𝐸) corresponding to the task 

parameters must be located simultaneously above the green and below blue 

surface. The red surface is always above the blue one, which means that if there 

is no slip at the end point, there will be no detachment either. 

 

 
 

Fig. 5 Discussion on the possible positions of the representative point(𝜃𝑓 , 𝜇, 𝐸) 
 

Also, it is noticeable that identical value 𝑅 of the constraint reaction in the 

tangential plane is obtained from (10) and (11) when the motion is non-

controlled 𝐹2 = 𝐹3 = 0 and when 𝜔1 = 0, so the above discussion is applicable 

to non-controlled free rolling of a heavy ball along a real rough sphere. 

Numerical solution parameters for the case of perfect rough surface in this 

example is: 

 

𝜃0 = 1.5,   𝐸 = 3,   𝜃𝑓 = 𝜋 4⁄ , 𝜑𝑓 = 𝜋 2⁄  . (26) 

 

Two-point boundary value problem of the maximum principle, in this case, has 

differential equations: 
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�̇� = 10𝜆𝜑(1 − sin𝜃) (21 cos
2 𝜃)⁄ ,

�̇� = 10𝜆𝜃(1 − sin 𝜃) 21⁄ ,

�̇�𝜑 = 0,

�̇�𝜃 = −10𝜆𝜑
2 (1 − sin𝜃) sin𝜃 (21 cos3 𝜃) + cos 𝜃/(2(1 − sin𝜃))⁄ ,

 (27) 

 

with initial conditions: 

 
𝑡0 = 0, 𝜑(𝑡0) = 0, 𝜃(𝑡0) = 𝜃0, 𝜆𝜑(𝑡0) =? ,

 0)( 0tH 𝜆𝜃(𝑡0) = −√21 (10(1 − sin𝜃0))⁄ − 𝜆𝜑
2 (𝑡0) cos

2 𝜃0⁄ .
 (28) 

 

We’re choosing 𝜆𝜑(𝑡0),   𝑡𝑓 and shooting: 𝜑(𝑡𝑓) = 𝜑𝑓 , 𝜃(𝑡𝑓) = 𝜃𝑓 where 

0,))sin1(10/(cos21)( 00

2

0

2  ftt 

 

Numerical solution this two-point 

boundary value problem is: 𝑡𝑓 = 5.882531, 𝜆𝜑(0) = 1.08448 and diagrams of 

the law of change in polar angles and required coefficient of friction 𝜇 =
𝑅 𝑁⁄ = 2 cos𝜃 (17 sin 𝜃 − 10)⁄  are given in Fig. 6. 

 

 
 

 
 

Fig. 6 Brachistochronic rolling of a ball along a perfect rough surface 

 

A new form of differential equations (27): 

 

1 2 3 4 5 6
t

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1 2 3 4 5 6
t

0.5

1.0

1.5

0 1 2 3 4 5 6
t

0.2

0.4

0.6

0.8

1.0
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𝑑𝜑

𝑑𝜃
=

𝜆𝜑

𝜆𝜃 cos
2 𝜃
=

𝜆𝜑

−cos2 𝜃√21 (10(1−sin𝜃))⁄ −𝜆𝜑
2 cos2 𝜃⁄

,

𝑑𝑡

𝑑𝜃
=

−3

𝜔2
=

−21

10𝜆𝜃(sin𝜃−1)
=

−21

10(−√21 (10(1−sin𝜃))⁄ −𝜆𝜑
2 cos2 𝜃⁄ )(sin𝜃−1)

,
 (29) 

 

gives us that the solution can be also reached through the squares, given that the 

angle 𝜃 is monotonically decreasing over time: 

 

𝜑𝑓 = ∫
𝜆𝜑(0)𝑑𝜃

cos2 𝜃√21 (10(1−sin𝜃))⁄ −𝜆𝜑
2 (0) cos2 𝜃⁄

𝜃0
𝜃𝑓

,

𝑡𝑓 = ∫
21𝑑𝜃

10√21 (10(1−sin𝜃))⁄ −𝜆𝜑
2 (0) cos2 𝜃⁄ (1−sin𝜃)

𝜃0
𝜃𝑓

.
 (30) 

 

By solving integral equations (30), it is easier to obtain the already obtained 

numerical solutions for (𝑡𝑓 , 𝜆𝜑(0)).  

Necessary value of the Coulomb coefficient of friction at the beginning of 

motion is: 

 

𝜇∗ = 𝑅(0) 𝑁(0)⁄ = 2 𝑐𝑜𝑠 𝜃0 (17 𝑠𝑖𝑛 𝜃0 − 10)⁄ = 0.0203343 ,                     (31) 
 

whereas necessary value of the Coulomb coefficient of friction at the end of 

motion is: 

 

𝜇∗∗ = 𝑅(𝑡𝑓) 𝑁(𝑡𝑓)⁄ = 2 𝑐𝑜𝑠 𝜃𝑓 (17 𝑠𝑖𝑛 𝜃𝑓 − 10)⁄ = 0.699823.                     (32) 
 

The assumption that surfaces are perfectly rough in this task of the 

brachistochronic motion is satisfied only for 𝜇 ≥ 𝜇∗∗ (e.g., rubber on rubber and 

glass on glass). If this is not the case (e.g., wood on wood), slip on the 

brachistochronic motion would occur earlier. The analysis also holds for non-

controlled motion of a heavy ball. 

 

 

 

Fig. 7 Slip circles depending on the Coulomb coefficient of friction 
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Figure 7 shows slip circles that yield the lowest possible end positions during 

brachistochronic motion, depending on the coefficient of friction. This means 

that the lower the coefficient of friction, the more restricted the region where the 

surface is considered perfectly rough. It may even happen that for 𝜇 < 𝜇∗ slip 

occurs at the beginning of motion. In the case when 𝜇∗ ≤ 𝜇 < 𝜇∗∗ the problem 

of optimal control should include the restriction (12) and the task of optimal 

control becomes considerably complicated. Such possibility will be analyzed in 

the section below. 

 

 

4. The brachistochrone problem for the case of imperfect rough sphere 

(𝜇∗ ≤ 𝜇 < 𝜇∗∗) 
 

Let us observe the brachistochrone problem with numerical parameters (26) and 

seek the solutions in a neighborhood of 𝜇 = 𝜇∗∗ where over the entire interval: 

 

𝜔2(𝑡) > 0, �̇�2(𝑡) > 0, 𝜔3(𝑡) = √30 (1 − 𝑠𝑖𝑛 𝜃(𝑡)) 7⁄ − 𝜔2
2(𝑡) > 0.         (33) 

 

Differential equations written through the theta angle as independent variables 

are: 

 
𝑑𝑡

𝑑𝜃
=

−3

𝜔2
,

𝑑𝜑

𝑑𝜃
= −√30(1 − 𝑠𝑖𝑛 𝜃) 7⁄ − 𝜔2

2 (𝜔2 𝑐𝑜𝑠 𝜃)⁄ ,

𝑑𝜔2

𝑑𝜃
=

−3

𝜔2
((30(1 − 𝑠𝑖𝑛 𝜃) 7⁄ − 𝜔2

2) 𝑡𝑎𝑛 𝜃/3 + 5𝑅3 2⁄ ) .

                                (34) 

 

Determination of the set of permissible values of the control 𝑢 = 𝑅3  is based 

on (5), (6) and (12): 

 
𝑅3𝜔2 − 𝑅2𝜔3 = 2𝜔2 cos 𝜃 7⁄

𝑅2
2 + 𝑅3

2 ≤ 𝜇2𝑁2
⇒ 

 

𝑅3 ∈ [𝑅3
𝑚𝑖𝑛, 𝑅3

𝑚𝑎𝑥],

𝑅3
𝑚𝑎𝑥 =

2 cos𝜃𝜔2
2+𝜔3√49𝜇

2𝑁2(𝜔2
2+𝜔3

2)−4𝜔2
2 cos2 𝜃

7(𝜔2
2+𝜔3

2)
,

𝑅3
𝑚𝑖𝑛 =

2 cos𝜃𝜔2
2−𝜔3√49𝜇

2𝑁2(𝜔2
2+𝜔3

2)−4𝜔2
2 cos2 𝜃

7(𝜔2
2+𝜔3

2)
.

 (35) 

 

In order that the set of permissible controls will not be an empty set: 

 

𝜔2
2 ≤

49𝜇2𝑁2(𝜔2
2+𝜔3

2)

4 𝑐𝑜𝑠2 𝜃
=

30𝜇2(17𝑠𝑖𝑛 𝜃−10)2(1−𝑠𝑖𝑛𝜃)

28 𝑐𝑜𝑠2 𝜃
.                                            (36) 

 

For the solutions in a neighborhood of 𝜇 = 𝜇∗∗ it is sufficient to introduce the 

restriction: 
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𝜔2(𝑡𝑓) ≤ 𝜇(17 sin 𝜃𝑓 − 10)√30(1 − sin 𝜃𝑓) 28⁄ cos 𝜃𝑓⁄ . (37) 

Let us assume that this condition is satisfied in order to avoid a very complex 

task of optimal control. It will be checked only subsequently after numerical 

solution is obtained. 

Cost functional in this new problem of time minimization is: 

 

𝑡𝑓 = ∫
3𝑑𝜃

𝜔2

𝜃0
𝜃1

.                                                                                                (38) 

 

whereas Pontryagin's function 

 

𝐻 =
−3

𝜔2
−
𝜆𝜑√30(1−sin𝜃) 7⁄ −𝜔2

2

𝜔2 cos𝜃
−

−
3𝜆𝜔2

𝜔2
((30 (1 − sin𝜃) 7⁄ − 𝜔2

2) tan 𝜃/3 +
5𝑢

2
) +

+𝜌(𝑢2 +
𝜔2
2(𝑢−2cos𝜃 7⁄ )2

30(1−sin𝜃) 7⁄ −𝜔2
2 −

𝜇2(17sin𝜃−10)2

49
).

 (39) 

 

Here, the maximum principle gives the following possibilities for optimal 

control over some of the intervals 

 

𝑢𝑜𝑝𝑡 = {

𝑢𝑠, 𝜆𝜔2 = 0 

𝑅3
𝑚𝑎𝑥,   𝜆𝜔2 < 0

𝑅3
𝑚𝑖𝑛,   𝜆𝜔2 > 0

𝜌 =

{
 
 

 
 

0, 𝜆𝜔2 = 0 
15𝜆𝜔2(7𝜔2

2−30+30𝑠𝑖𝑛 𝜃)

8𝜔2(𝜔2
2 𝑐𝑜𝑠 𝜃+15𝑅3

𝑚𝑎𝑥(−1+𝑠𝑖𝑛𝜃))
, 𝜆𝜔2 < 0  

15𝜆𝜔2(7𝜔2
2−30+30𝑠𝑖𝑛 𝜃)

8𝜔2(𝜔2
2 𝑐𝑜𝑠 𝜃+15𝑅3

𝑚𝑖𝑛(−1+𝑠𝑖𝑛 𝜃))
.  𝜆𝜔2 > 0

                                              (40) 

 

The costate variable 𝜆𝜔2 in this task of optimal control has a role of so-called 

“switching function”, so that its sign on a non-singular part determines whether 

the control will be on the upper or lower limit. On a singular part it equals zero. 

Calculation of the singular optimal control [13] can be performed in the 

following manner: 

 

𝜆𝜔2 = 0 ⇒
𝑑𝜆𝜔2

𝑑𝜃
= −

𝜕𝐻

𝜕𝜔2
= 0 ⇒ 𝜆𝜑 = −

√7cos𝜃√30(1−sin𝜃)−7𝜔2
2

10(1−sin𝜃)
,

𝑑2𝜆𝜔2

𝑑𝜃2
= 0 ⇒ 𝑢𝑠 =

2

7
cos𝜃

7𝜔2
2+15sin𝜃−15

15(sin𝜃−1)
⇒ 𝑅 =

2

7
cos 𝜃 .

 (41) 

 

On a non-singular part: 

 

𝑅 = 𝜇𝑁 = 𝜇(17 𝑠𝑖𝑛 𝜃 − 10) 7⁄ .                                                                       (42) 
 
The assumed structure of the optimal control in a neighborhood of 𝜇 = 𝜇∗∗ is: 
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𝑢𝑜𝑝𝑡 = {
𝑢𝑠,   𝜃0 ≥ 𝜃 > 𝜃

∗

𝑅3
𝑚𝑖𝑛,   𝜃∗ ≥ 𝜃 ≤ 𝜃𝑓

.                                                                          (43) 

 

Numerical solution procedure (two-parameter shooting) consists of the 

following steps: 

1. by choosing 𝜔2(𝜃0) and 𝜃∗, numerical integration of the basic system 

over the interval[𝜃0, 𝜃
∗] 

 
𝑑𝜑

𝑑𝜃
= −√30(1 − sin𝜃) 7⁄ − 𝜔2

2 (𝜔2 cos 𝜃)⁄ ,   𝜑(𝜃0) = 0

𝑑𝜔2

𝑑𝜃
= −

3

𝜔2
((30 (1 − sin𝜃) 7⁄ − 𝜔2

2) tan 𝜃/3 + 5𝑢𝑠 2⁄ ) .
 (44) 

2. and basic and costate system over the interval [𝜃∗, 𝜃𝑓] 

 
𝑑𝜑

𝑑𝜃
= −√30(1 − sin𝜃) 7⁄ − 𝜔2

2 (𝜔2 cos 𝜃)⁄ ,

𝑑𝜔2

𝑑𝜃
= −

3

𝜔2
((30 (1 − sin𝜃) 7⁄ − 𝜔2

2) tan 𝜃/3 + 5𝑅3
𝑚𝑖𝑛 2⁄ ) ,

𝑑𝜆𝜑

𝑑𝜃
= 0,                    𝜆𝜑(𝜃

∗) = −
√7cos𝜃∗√30(1−sin𝜃∗)−7𝜔2

2(𝜃∗)

10(1−sin𝜃∗)
,

𝑑𝜆𝜔2

𝑑𝜃
= −

𝜕𝐻

𝜕𝜔2
= ⋯,                                                   𝜆𝜔2(𝜃

∗) = 0.

 (45) 

 

fulfillment of conditions is 𝜑(𝜃𝑓) = 𝜑𝑓, 𝜆𝜔2(𝜃𝑓) = 0 ensured. 

Numerical example was done for the value of Coulomb’s coefficient 𝜇 = 0.6 

and numerical solutions were obtained 𝜃∗ = 0.821251, 𝜔2(𝜃0) = 0.0878961. 

 

The diagram of the “switching function” is given in Fig. 8, the dashed line 

(𝜇 = 0.6). The final part of the motion is shown only, the solid line indicating 

the case when it is possible to a have a singular part over the entire interval 

(𝜇 ≥ 𝜇∗∗), and the dash-dotted line designating a boundary case (𝜇 = �̅�). 

 

By gradually decreasing the coefficient of friction and conducting the numerical 

solution procedure, it can be established that conditions (37) are disrupted for 

�̅� = 0.576383 . 
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Fig. 8 The switching function 𝜆𝜔2 

 

Here, it is also necessary to check whether the conditions (40) of the maximum 

principle are fulfilled after numerical solutions is done 

 

𝜆𝜔2(𝜃) ≥ 0,    𝜃
∗ ≤ 𝜃 ≤ 𝜃𝑓,                                                                       (46) 

 

as well as the condition (37). 

If the coefficient of friction is lower than �̅� the structure of optimal control (43) 

changes, and the numerical solution procedure becomes more complex. 

 

 

5. Conclusions 

 

The problem of brachistochronic motion of a heavy uniform ball rolling without 

slip along the upper outside surface of an imperfect rough stationary sphere is 

solved. 

In the first part of the paper the determination of the brachistochronic motion is 

solved as the problem of optimal control using Pontryagin’s maximum 

principle. Three projections of the ball’s angular velocity onto the base vectors 

of the spherical coordinate system are taken for controls. The two-point 

boundary value problem, which is reduced to the two-parameter shooting of one 

coordinate of the conjugate vector and end moment, is solved. It is shown that 

there is no angular velocity projection onto the radial direction.  This solution 

corresponds to the motion of the heavy ball along a perfect rough sphere, 

because it is necessary to ensure unrealistically high Coulomb coefficient of 

sliding friction. 

It is shown that mutual detachment of the bodies cannot occur before their 

mutual slipping at the contact point. A corresponding numerical example is 

given, with graphical representation of the effects of initial energy values, 

Coulomb coefficient and ultimate height of the ball center on the solution 
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structure, in this case. The review highlights regions where it is possible to 

obtain a singular control across the entire motion or a combination of a singular 

and non-singular part of the optimal trajectory.    

The second part provides the following discussion: if the constraint between the 

sphere and the ball is imperfectly rough, the formulation of the optimal control 

problem should include restrictions to the ratio between the tangential and the 

normal components of the reaction of constraint. Here, the problem of optimal 

control is formulated in such way that the tangential component of the reaction 

of constraint is taken for the control, with the restriction resulting from 

Coulomb laws of sliding friction. The problem thus formulated belongs to the 

theory of singular optimal controls, and the solution that satisfies the Maximum 

principle consists of a singular part at the beginning of motion and a non-

singular part, during which the ratio between mentioned components has 

maximum possible value that concrete surfaces can achieve. 

Futher research of this problem involves: research on the structure of control 

and appropriate numerical solutions for 𝜇∗ < 𝜇 < �̅�, generalization of the result 

to the ball rolling on the stationary rotating surface and generalization of the 

result to the ball rolling on the moving surface which is rotating about vertical 

axis at constant angular velocity. 
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