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Abstract. This paper discusses the effects of structural parameters of the bucket wheel
excavator boom on its dynamic behavior in the vertical plane. The boom is modeled as an
elastic body with infinite degrees-of-freedom, consisting of several structural parts with
constant cross section. The traditional approach in the literature by the discretization of the
continuum is avoided by solving partial differential equations of transverse vibrations of the
elastic body. The advances in modern software for symbolic programming have enabled the
possibility of solving the above mentioned equations. The paper presents the procedure for
symbolic set up of characteristic transcendent equation in analytical form and its numerical
solving, i.e., defining eigenfrequencies. The original procedure for defining and graphical
representation of the eigenfunctions is also given. The results obtained in this paper enable
the possibility of the simple analysis of the effects of various parameters on the dynamic
behavior of the boom. As an example the influence of the boom inclination angles is
analyzed.

1. Introduction

The analysis of dynamic behavior of the bucket wheel excavator (BWE) in the operating
conditions includes set up and solving differential equations for small oscillations of the
system, but primary considers the determination of eigenvalues and corresponding mode
shapes. In some previous references BWE is considered as a mechanical system with finite
degrees-of-freedom (DOF), and the corresponding list of references is given in [1]. The
analysis of the bucket wheel boom (BWB) oscillations in vertical plane, whereas the boom
is modeled as elastic body with infinite DOF is shown in [1]. Also, the procedure of
modeling the waterside boom of large container cranes with infinite DOF is given in [2].
Basic principles of modeling of a slewing flexible beam under the moving payload are
given in [3]. In this paper the method for solving the system of partial differential equations
of transverse oscillations of the beam-type system with arbitrary number of structural parts
with constant cross section is developed. The advantage of the developed method is in
using the maximum rank of the matrix 4x4 instead the usual rank of 4nx4n for the beam-
like structure consisting of n structural elements with constant cross section. The procedure
can be fully automated by using modern software for analytical manipulation of
mathematical expressions. The possibility for obtaining the complex analytical shape of
transcendent characteristic equation enables considering the effects of various structural
parameters on the natural frequencies and mode shapes. The method developed in this



paper enables also to give the numerical and visual presentation of the characteristic
equation solution depending on one or several structural parameters of the system under
consideration. That makes possible to define the qualitative effects of some parameters. The
proposed method, after analyzing the effects of parameters and estimation of interval of
each characteristic value, enables numerical solving of characteristic equation, as well as
obtaining the eigenfunctions in analytical form and their graphical representation. In the
case of applying any kind of software for structural analysis it is necessary to repeat the
computation for each set of structural influence parameters that is avoided for the procedure
given in this paper. The adopted procedure leads to the fundamental approach for solving
partial differential equations against the usual methods for system discretization by
introducing lumped masses. Finally, the developed method is implemented for analyzing
dynamic behavior of BWB in the vertical plane. As an example of structural influence
parameter the slope angle of BWB is assumed, as well as its influence on the fundamental
frequency and higher harmonics and mode shapes.

2. Transverse oscillations of the beam-like structure

The oscillations around the equilibrium position of the beam-like structure consisting of n
structural parts with constant cross section are considered, Figure 1.
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Figure 1. Beam-like structure consisting of n structural parts with constant cross section

In each section we have the following differential equation [4]
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where E;[; is the flexural stiffness, while p; is the density and A; is the cross section area.

By solving the system of differential equations (1) by using the method of separation of
variables

Yi(zi,t)=Z;(z;)T(t) )
the well-known solutions are obtained

Zl'(Z,') = CliCOSh(kiZi) + CZ,-Sinh(k,-z,-) + C3iCOS(kiZi) + C4,~Sin(k,-z,-)
T(t)= ACos(wt)+ BSin(wt), 3)
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The characteristic value k is defined from 4n boundary conditions, whereof we have two of
them at each end, while we have four of them at each connection between the elements. By
introducing the matrices

- . T
C; =[c1;¢2;¢3;¢4;] ©

and by using the fact that the vectors which corresponds to the contiguous parts can be
expressed one over the other, the following recurrent relation can be introduced

Cipy=MC; gl
where
M; = Mig My, -
whereby

Cosh(k;l;) Sinh(k;l;) Cos(k,l,) Sin(k,l,)
T k;Sinh(k;l;) k,Cosh(k;l) — k,Sin(k,l,) k,Costki],)

k2E1,Cosh(k,l,) Kk2E1Sinh(kl)) -k E1,Cos(kl,) - ki Eq,Sin(k],)
K2 E 1Sinh(k,l,) K E,1,Cosh(kl,) kK ELSin(kil,) -k E,1,Cos(k,l,)

(8)
1 0 1 0
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Equivalent forces between the sections depend on the character of connection. The
connection type can be just a simple change of cross section, where the equivalent force
and the moment equal zero. In the case of inserted masses, connection by elastic elements
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or similar, the equivalent force and the moment can be expressed by C;

Fyi=FCiyT(0), Mg =N,CinT(0) i
where

F.=[F1; F2,; F3; F4,; ]

~ (10)
N; =[M1; M2; M3; M4, |



On the left and the right end of the complex structure, depending on the type of connection
between the end sections, we always have two boundary conditions which can be expressed
in the matrix form

ic - e |
=| |, = | 3
1 0 n 0 (11)

Having in mind the recurrent relation (6), the boundary conditions (11) can be together
written as

DC, =0, (12)
where
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D:L?} R =RM, M, .MM, 0=[0 0 0 0]". (13)

Characteristic values kj ,J =1,...,0c , are defined by solving characteristic equation

det(D) =0, (14)

with a note that is the determinant of the forth order independently on the number sections
and this is the main advantage of the mentioned way of solving such problem. For each

characteristic value can be defined from (12)Cy(k;), with a note that one non-zero
constant can be equalized to one. By using the recurrent relations (6) all other remaining
constants are defined C,-(kj ),i =2,...,n in all modes, so we have in each section (i) for

the ( j-th ) shape of oscillations

Z,(z,) =C1,Cosh(k,z,)+C2,Sinh(k,z)+C3, Cos(k,z,)+C4,Sin(k,z,)

1< iy<i

(15)
T,(t)=A4,Cos(w,)+ B Sin(w 1),
and finally in each section,
(x .
yi(Zi,t)Z Z Zl/(zl)Tj(t)’ l:1,...,n. (16)
J=I

In addition to the fact that the rank of the matrices doesn’t exceed 4, and the fact that the
exposed procedure can be algorithmically solved for numerous various boundary
conditions, here is mentioned the possibility of obtaining analytical shape of characteristic
equation (14) on the basis of which can be analyzed the influence of any structural
parameter on the characteristic values and mode shapes. The application of this method will
be expressed on the example of transverse oscillations of BWB in the vertical plane.



By introducing into consideration differential equations of longitudinal oscillations for the
in-plane frame structures with arbitrary orientation this method can be generalized,
whereby the maximum rank of the corresponding matrix will be 6.

3. Analysis of dynamic behavior of the BWB

The dynamic model of the BWB is given in [1], whereby the BWB primary oscillates in the
vertical plane, Figure 2. The model parameters are defined as:
Iy =1 =52 m, span between the boom hinge and the stay connection;

Iy =1,=12m, span between the stay connection and the free end of the boom -
overhanging;

h =4.5m, eccentricity of the boom connection;

b=El =E],=8- 10" Nm? , flexural stiffness of the BWB;

co =8-10'" N/ m, reduced stiffness of the stay (system of ropes for BWB hanging);
P14 = prdy =3- 10° kg / m , distributed mass of the BWB;

m=2-10° kg , mass of the bucket wheel (BW);
[, inclination angle of the BWB stay (rope system for BWB hanging).

A

Figure 2. Dynamic model of the BWB in the vertical plane.

The boundary conditions in the left and the right end are defined by matrices



w L B 1
L= 0 :
L 0 -1 o]
% { Cosh(kl,) Sinh(kl,) —Cos(kl,) - Sin(kl,) }

Ry Ry, Ry Roy4
Ry, = mke* Cosh(kl,,) + b Sinh(kl,) .
Ry =bCosh(kl,) + mkc* Sinh(kl,), (17)

Ry3 = mke? Cos(kl,,) +b Sin(kl,),
Ryy = —bCos(kl,) + mke?® Sin(kl,,).

Equivalent force and the moment between the sections are:

Fy=coSinp [Sin  hk Cosp ~ SinB  hk Cosf |

. . (18)
N, =-cohCosp [SinB  hk Cosp  Sinp hk Cosp |

By applying the procedure developed in the previous section of this paper it is possible to
write the analytical form of the characteristic equation (14)

-2 b k? (Cosh[k 1s] (b co h k Cos[3] (h k Cos[k Is] Cos[3]+Sin[k Is] Sin[3])*+b co h k
Cos[3] Cosh[k la]* (h k Cos[k Is] Cos[3]+Sin[k Is] Sin[3])-Cosh[k la] (Sin[k la]

(2 Kk’ Cos[k Is] (b*+¢? co h® m Cos[3])+b co Sin[k Is] (h* k> Cos[3]*+Sin[3]*))+k Cos[k la]
(-2 b co h* k Cos[k Is] Cos[3]*+Sin[k Is] (2 b* k?+2 ¢* co h* k* m Cos[3]*-b co h

Sin[2 A]))+(Cos[k la] (2 k* Cos[k Is] (b*+c? co h* m Cos[3]*)+Sin[k Is] (-4 b ¢’ k* m-

b co h? k* Cos[3]*+4 ¢® co h k* m Cos[3] Sin[B]+b co Sin[3]*))+k Sin[k la] (-4 b ¢’ k' m
Cos[k Is]+Sin[k Is] (-2 b® k*-2 ¢* co m Sin[3]*+b co h Sin[2 £3]))) Sinh[k la]-b co h k
Cos[3] (h k Cos[k Is] Cos[3]+Sin[k Is] Sin[3]) Sinh[k la]®)+(b co Sin[A3] (h k Cos[k Is]
Cos[B]+Sin[k Is] Sin[B])+b co Cosh[k la]* Sin[B] (h k Cos[k Is] Cos[3]+Sin[k Is]
Sin[3])+Cosh[k la] (2 Cos[k la] (Cos[k Is] (b> k’+c* co h* k m Cos[3]*+b co h k Cos[/]
Sin[3])+b Sin[k Is] (-2 ¢* k* m+co Sin[B]*)+Sin[k la] (Cos[k Is] (-4 b ¢’ k' m+b co h’ K’
Cos[B]*4 ¢’ co h k* m Cos[B] Sin[B]+b co Sin[3])-2 k Sin[k Is] (b* kK*+¢* co m
Sin[3]%)))+(-2 k Cos[k Is] Sin[k la] (b> k*+b co h Cos[3] Sin[3]-c* co m Sin[3]*)+Coslk la]
(b co Cos[k Is] (h? k> Cos[B]>-Sin[3]*)+2 k Sin[k Is] (-b* k+¢* co m Sin[/3]%))) Sinh(k la]-

b co Sin[3] (h k Cos[k Is] Cos[3]+Sin[k Is] Sin[/3]) Sinh[k la]*) Sinh[k Is]) =0

(19)

Analytical form of the characteristic equation enables to analyze the effects of any kind of
structural parameters on the mode shapes. Structural parameters are various and may
depending on the geometry, cross section area, boom overall dimensions, performances of
used materials and stiffness of ropes in the system for BWB hanging or similar. In this
paper as an example is shown the analysis of the BWB inclination angle effects. Modern
software for manipulating symbolic expressions gives the possibility for immediately visual



representation of such effects [5]. In Figure 3 is shown the graphical representation of
finding the lowest root of the characteristic equation for various values of BWB inclination.
It is easy to observe the increase of the fundamental frequency on the increase of the slope
angle (inclination). The cause of this dependency originates from the fact that the
fundamental mode shape approximately corresponds to the BWB oscillations as the rigid
body. By similar analysis it is conclusive the negligible effect of the inclination to the 2"
and the 3" mode shape.
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Figure 3. Influence of the inclination angle on the characteristic values of fundamental mode shape.



Figure 4 shows the dependency of characteristic values for the three mode shapes on the

BWB inclination angle. The identical procedure can be applied to consider the effects of
any other parameter.
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Figure 4. Dependence of characteristic values on the inclination angle.

For f3 = 40° =27 /9 the following characteristic values are obtained:

k1=0.024683108 m"'
k2 =0.051122300 m™! (20)
k3 = 0.099402091 m™!

which correspond to the constants

Clk)=[0 1 0 1.0067317],

Cl(ky)=[2.1983242  -2.077194 0.43328531 4.3056356],
Cl(ky)=[0 1 0 -114.50673],

C1(ky)=[6.4087776 9.6977613 -52.512300 98.869108],

Cl(k3)=[0 1 0 4706.5647],

CT (ky) =[54.401435 150.62610 -4191.1181 2012.0188].
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on the basis of which it is possible to define the eigenfunctions of oscillations (3). In Figure
5 are shown the first three mode shapes.
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Figure 5. First three mode shapes of BWB oscillations.

Acknowledgement. This work was supported by the Republic of Serbia, Ministry of
Science and Technological Development, through project No.114052.

References

[1] Petkovi¢ Z, Bosnjak S, Obradovi¢ A and Mateji¢ P (1998) Influence of the Tightner Inclination Angle of the
Bucket Wheel Excavator Boom to its Dynamic Behaviour, Proceedings of the | 5" ECPD International
Conference on Material Handling and Warehousing, D. Zmi¢ (Ed.), pp. 3.212-3.216.

[2] Zmi¢ N Hoffmann, K and Bosnjak S (2009) Modelling Of Dynamic Interaction Between Structure And
Trolley For Mega Container Cranes, Mathematical and Computer Modelling of Dynamical Systems. paper
accepted for publication.

[3] Zmi¢ N and Bosnjak S (2008) Comments on “Modeling of system dynamics of a slewing flexible beam with
moving payload pendulum”, Mechanics Research Communications, Vol. 35, issue 8, pp. 622-624.

[4] Vukovié¢ J and Obradovi¢ A 2007 Linearne oscilacije mehanickih sistema (Linear Vibrations of Mechanical
Systems), Maginski fakultet, Beograd.

[5] http://reference.wolfram.com/mathematica/guide/ Mathematica.html




