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This paper is dedicated to the establishment of a general procedure of forming the optimal
control problem of variable-mass nonholonomic rheonomic mechanical systems, where
reactions of constraints are present in differential equations of motion. Dimensions and
structure of a configuration space depend on the number of reactions of constraints that are
the subject of our interest, i.e. only the reactions whose magnitudes are subjected to
limitations are considered. In this paper, the procedure enables the direct application of
Pontryagin’s maximum principle for the systems with limited phase state. Attention is
particularly focused on discussing various modes of realizing the control by combining the
active control forces and subsequent imposition of ideal holonomic mechanical constraints.
Brachistochronic motions play an important role in this type of problems, because in them
the control of motion can be realized exclusively with ideal constraints. The paper provides
three examples of this method application, which are related to the realization of the
brachistochronic motion of mechanical systems.

1. Introduction

In the theoretical field of optimal control, the motion optimization of systems with limited
phase state has been discussed in detail [1-5], but the mathematical models of those
limitations do not show their physical essence. The basic problem of the determination of
the optimal control which provides the motion along the optimal trajectory according to the
restrictions imposed (theorems 22-25, [1]) is being solved. The immediate applications of
such solving procedure of mechanical system control problems are sensible if the phase
limitations belong to some subjective requirements (insurance against undesirable
behaviour of the systems, for example). But, if the motion of mechanical system is limited
by material constraints, then, independent of the control, the constraint occurs which,
according to the procedure mentioned, would remain “hidden” in the solutions for optimal
control. Another important fact, which is not considered in the mathematical theory of
optimal control, is the difference between holonomic and nonholonomic mechanical
constraints, even though some authors refer to holonomic constraints as all phase
limitations.

The constraint reactions in practical problems present the load of the system with useful or
harmful consequences, and thus it is necessary to have a possibility of influencing their
behaviour during the motion control process. Therefore, in this paper, the mathematical
model of a mechanical system will be written in such a way so as to provide the explicit
presence of constraint reactions. Thereby, if the consideration of all constraint reactions is
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unnecessary, the structure and dimension of the configuration space will depend upon
which and how many of them are the object of our interest.

This paper is dedicated to the establishment of a general procedure of setting the problem of
optimal control of mechanical systems in whose differential equations a section of
constraint reactions figure. The choice of those reactions of constraints, in addition to their
limitations required, can be also conditioned by the need for a simpler manner of solving
the problem. Due to this fact, the reactions of all nonholonomic constraints and a chosen
section of holonomic constraints will figure in the equations of mechanical systems. The
procedure applied in this paper enables the direct application of Pontryagin’s maximum
principle, therefore the optimal control problem solving procedure itself will not be
discussed herein.

The procedure is based on methodology presented in [6] and extension of a general
procedure used in [7-9], with special reference to the problems involving limited internal
reactions of constraints between some bodies in the system or even the force in the
intersections of bodies themselves. The solution is found then for a number of examples
related to the control by the help of mechanical constraints at various optimality criteria
[10-13], however, the cases with limited reactions of constraints are not considered.

This paper considers further generalization to the rheonomic systems and variable-mass
systems. In Section 2 the optimal control problem is set for the systems with mechanical
constraints and Section 3 shows the procedure for solving the problem by applying
Pontryagin’s maximum principle. Section 4 is dedicated to the discussion of various modes
of realizing the control by combining active control forces and subsequent imposition of
ideal holonomic mechanical systems.

Brachistochronic motions play an important role in this type of problems, because in them
the control of motion can be also often realized exclusively by ideal constraints, i.e. without
the action of active control forces. The latest results, where the application of mentioned
method enabled this paper’s authors and their collaborators to solve a number of optimal
control problems, are presented in [14-22], while the results of other authors are given in
references [23-58]. A more detailed presentation of other authors’ results is also found in
[14-22]. We briefly emphasize the fact that in the cited references by other authors there are
no considerations of the problems concerning variable-mass systems and, except for [45],
rheonomic systems have not been considered. It is noticeable that nonholonomic
mechanical constraints are present only in a smaller number of papers [48-56], which
naturally belong to the dynamics of mechanical systems, while other papers dealt mainly
with the optimal motion of a particle. This paper provides three examples illustrating a
general method developed herein.

Section 5 shows the realization of control for the case of a nonholonomic rheonomic
mechanical system [15]. Two modes are presented, control by active forces and without the
action of active forces.

A general procedure of determining brachistochronic motions for the case of a variable-
mass system is presented in [16], and the example from that paper is shown in Section 6.
We have demonstrated the procedure of realizing the control exclusively by the help of
constraints realized in this case by the rolling without slipping of a moving centrode on the
fixed one.

Section 7 refers to the case when the reaction of nonholonomic constraint is limited in the
problem of brachistochronic motion of the Chaplygin sleigh. In optimal motion the reaction
of the blade is positioned on its boundary in one section of the motion interval. Here too the
motion is realized by imposition of an additional ideal holonomic constraint.

26



Fourth Serbian (29" Yu) Congress on Theoretical and Applied Mechanics
Vrnjacka Banja, Serbia, 4-7 June 2013 P-03

2. Problem statement

The controlled motion of a rheonomic mechanical system with restrictions of a certain
number of reactions of ideal mechanical constraints is considered, so their presence should
be ensured in differential equations of the motion of a system. Those holonomic constraints
whose reactions are not subject to restrictions should be eliminated from consideration,
which is achieved by establishing the configuration space on those constraints. The number
of dimensions # of such space equals the difference between the total number of the
system coordinates and the number of eliminated constraints, respectively the sum of the
number of DOFs of the system and the total number of constraints whose reactions are
considered. In that space the configuration of the mechanical system is determined by

generalized coordinates g = (ql,qz,...,q” ). Let, in a general case, the system also contain
¢ variable-mass particles

m,=m,(1), p=1...1 1)
whose particles are expelled (7, <0)or gained (m, >0)to the system by relative

velocities
—rel _ =rel

i =@ @
Hereafter it will be considered that (1) and (2) are known functions.
The kinetic energy of the rheonomic system has the form

| Y _ ..
TZEaij(qst)qlqj+ai(q9t)ql+a0(q>t)s la]:L'“an- (3)
Let the system move in the field of known potential forces with potential energy
I =1l(g,1), “4)
and let the system be also acted upon by arbitrary known nonpotential forces, whose
generalized forces are

QiWZin(aaaat)’ i=1,...,l’l. (5)
In the configuration space there figure the mechanical constraints that are intentionally left
to consider their reactions. Let the motion of the system be limited by » ideal independent
nonholonomic rheonomic mechanical constraints

b (q,6)+b* (.04 =0, a=1,..,r, (6)
and p ideal independent holonomic rheonomic mechanical constraints
0% (q.0=0, B=1,..,p. (7)
on the basis of which the conditions for velocities are obtained
s B
—69. "+—69 =0. ®)
oq' ot

The change in the mass of the system causes the occurrence of reaction forces F gar that in

the system of generalized coordinates have the form

. N oF

— - P . ~rel YTp
@ = X EyY = Yy, ©

p=1 09" p=1 oq
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In addition to mentioned forces and restrictions, the system is subjected to the action of

k active control forces Fj, that is
ko o
Of =Y Fs—=. (10)
s=1  0q
Differential equations of motion of such variable-mass system in the form of Lagrange’s
equations have the form

d oT oT oIl ~
____=__'+in+ ivar

where generalized forces

+R +0Of (11)

~ . £ or

— = - P

ivar(QaQat): z MoV i + l_Var. (12)
p=1 oq

var

The expressions occurring here with Q;

%" are a consequence of the form of differential

equations (11). They are annulled by the same expressions on the left-hand side of those
equations, when differentiation with respect to time is done.

Generalized reactions of constraints R; have the form

06"
Rizbiava-l——.ﬂ'g (13)
oq'
where v, and Hp represent multipliers of mechanical constraints (6) and (7). However, as
the directions of ideal constraint reactions ]\77 are defined by the constraints themselves,
the generalized reactions can be expressed in the form

Ry =d!(G.0ON,, y=1,...p+r (14)

where d/ (¢,t) are known functions that define the directions of ideal constraint reactions.
The quantities N, represent the projections of each reaction to its eigendirection in

particular. Such a manner of introducing the ideal constraint reactions into the equations of
motion is convenient, because all limitations of constraint reactions can be imposed only by
their projections N, .

Such procedure can be also applied to control forces 17“5 , especially in those systems where
the directions of control forces are defined by the system configuration. Then

Of = (q,q.1)Fs, §=1,...k, (15)
where cl~5 (q, q;, t) are known functions that define the directions of control forces 135 in the
configuration space. The quantities Fj are the projections of forces to those directions.
Further, we can introduce the vectors F = (K, F,,....,F;) and N = (Nl,Nz,...,Np+r)

from corresponding vector spaces v and VP . The boundaries of those vectors
determine the sets Uy and U from corresponding spaces such that:

FeUpcVk NeuycvP™ (16)
In a general case, these sets can be constant or variable. The sets
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. N,<N,<N, 1
Uy : y =Ny S48y (17)
and
* Kk

where the boundaries, designated by ()’k and ()**, are constant represent an example of

constant sets.
If, in addition to the constraints (6) and (7), following limitations are imposed on the system

v?(@.,3.0=0, w=l,...s , p+r+s<n, (19)
which do not represent mechanical constraints, the structure of (11) will not be changed.
This fact indicates a crucial difference between mechanical constraints and limitations (19).
They only represent the required integrals of differential equations (11).

Let the optimality of the system motion in the interval [10 , 11] be required by the condition

tl . J— J—

J=[F’q.q.F.N.0ydt — inf . (20)
; FeUy
0

NeU,
The state of the system on the interval ends is presented with manifold

0"(q(1):q (), 10,9 (5),q (1)) =0, 7 =1,...,z<4n, €2y
with given ¢, and, in a general case, undetermined ¢ .

Let the system be controllable, i.e. let among the allowable forces F = F(¢) exist such that

satisfy forces restrictions (16), and based on which we can obtain the solutions of
differential equations (11) that satisfy end conditions (21) and equations of constraints (6),
(7) and (19).

Solving the problem of optimal control of a variable-mass mechanical system, whose
differential equations are (11), consists in determining the control forces F = F(f)and the

system motions corresponding to them, so that the condition of optimality (20) is satisfied.
At the same time, the conditions (6), (7), (16), (19), and (21) are satisfied.

3. Solution of the optimal control task

The previously defined problem should be formulated in a form convenient for the solution
by applying the method of the optimal control theory. For that purpose, let us introduce

n dimensional control vector # =(F,N)and 2n+1 dimensional state vector

n+l

X =(7.4,9"") where rheonomic coordinate q"+1 satisfies

¢ =1, ¢ 1) =1. (22)

Differential equations (11) can be written in a contravariant form, and on the basis of this,
we can also obtain state equations that are linear for controls
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=" = @+ @y, P =1, G m=1n, (23)
where
o . » met =1,k
T T A NN A T
oq’  oq adl ™ j=k+1,..,n
Restrictions to state variables (6),(8) and (19) can be then integrated

o’ (X)=0, e=1,.,p+r+s . (25)
Differentiating them with respect to time, in accordance with differential equations (23), we
obtain equations

° (x,u) =0, (26)
where initial condition (22) should be added to end conditions (21) as well as conditions
(6), (7), (8) and (19) at initial time moment

b% (qlte), 10 ) + b7 (7 (1), 10)d' (1) =0,
00F . 86P

B (= _ o
6% (@(1y),10) = O, o 0+ 50w =0 27)

v (@(19).q (1), 19) = 0.
All mentioned conditions on the interval boundaries can be represented in the form

" (X(1g).X(1)) =0, 7=1,..,z+2p+r+s+1 . 28)

The vector of allowable controls # from the vector space V" = vk xyptr considering
(16), belongs to the set U , that is

uelch". (29)
Additionally, the allowable controls must also satisfy the relations (26). The allowable
controls on the interval [to,tl]are, in a general case, limited functions, piecewise

continuous, with a finite number of discontinuities.
The optimality criterion (20) obtains the form

tl
J = [ fO(x.u)dt — inf . (30)
o uel
The relations (23), (25), (28), (29) and (30), with a specified initial time moment ¢, define
fully the problem of optimal control in the form convenient for immediate application of

Pontryagin’s maximum principle. In this regard, based on (23) and (30), the function is
formed

H =g f " 0)+ A x"™ + 2, (f1 )+ fT X ) + Ay (31)
and, based on it and the relations (26), the conjugate system of equations
oH op

+K'g
ox8 ox8

where K, are multipliers corresponding to the relations (26). If among the allowable

Ay = const <0, Zg:— ,g=L..,2n+1, (32)

controls (29) there exists optimal control u,,, =1, (?) , the solutions X,

ot = Xopi (1) and
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Zop, = )Top, (¢) correspond to it, so that the maximum principle generates the conditions on
the optimal trajectory
H(Xopss Aopr>tlgpe) = SU HO s, Agypr 1) - (33)
uelU

The relations following immediately from this condition represent only the necessary

conditions for extremal solutions u,,; = u,,, (¥, 1), among which optimal ones should be

sought.
Note that in differential equations (23) and relations (26) the controls figure linearly. Then,

if the subintegral function f 0 (>,u) of the functional (30) is also linearly dependent of

control or does not depend of it at all, there may occur singular controls on some
subintervals.
We give an example of a case when allowable controls belong to a constant set

% ok

and when minimization of the interval[to,tl]is conditioned, i.e. when fO(x,u)=1. It
follows then from (33) that

Cj i /7 (%) <0
Uj ext =\ Ujsingular ()7, /T), /1n+ifij (E) =0, (35)
c; Apiif T (@) >0

where a special problem is that we do not know in advance the structure of the control for
time subintervals, and singular controls are determined by the help of a special theory of
singular optimal controls [59]. The theory also makes available the Kelley conditions [60]
on singular intervals as well as conditions for the conjugation of singular and nonsingular
sections [61].

Note that there is a possibility that some controls #; do not have imposed constraints (29),

i.e. they belong to an open set. Let such controls be k; . In that case, taking into account that
the functions ®° = ®*(x,u) linearly depend here of the control, it is always from &, of

relations ®%(x,u)=0 that such controls can be expressed via other controls, and thus

obtained dependency is also linear. In differential equations (23), then j=1,..,n—k and

mentioned ; relations ®¢(X,u) =0 are excluded from relations (26) and (32).

End conditions (28) are completed by corresponding transversality conditions [1], so that
their total number equals the total number of differential equations, 4n+ 2, where, in cases

when # is not specified, the condition H (J?(to),/T(tO)):O or H (E(tl),z(tl))=0 is
available.

Substituting extremal control u,, =

system (28), we obtain the two-point boundary value problem of the system of ordinary
nonlinear differential equations. The difficulties in its numerical solving are a limiting
factor in the application of the Maximum principle in optimal control of mechanical
systems, and each successfully solved problem of this type certainly deserves attention. The
lack of general theorems on the existence of TPBVP solutions makes us most often seek

L_text(f,/T) into a basic system (20) and conjugate
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solutions without such theorems, and a special problem are also multiple solutions among
which optimal ones too have to be sought.
After numerical computations [62] we obtain solutions in a numerical form

Xext = Xoxt 1)y Aoyt = Aoxt (0), Ugyy = U (1) (36)
therefore the procedure of determining extremal controls is completed.

4. Realization of optimal control in systems with mechanical constraints

On the basis of solution (36) , in addition to the law of change of &k control forces, we also
obtained the laws of change in p + r reactions of ideal constraints

F§=F§(t)9Ny=Ny(t) > (37

so it is evident here that the realization of optimal motion is achieved by the action of active
control forces. Note that this paper considers the case when the number of active control
forces equals the number of DOFs of a mechanical system, which is the most common case
in motion control problems, although the methodology used in this paper is applicable to
other cases as well.

If the number of active control forces is increased, some of them can be arbitrarily taken to
satisfy extremal solutions (36). It is even possible to have the case when new active
forces F, =uy,, (1) are introduced, which would lead to all reactions of holonomic and

nonholonomic mechanical constraints being equal to zero (v, =0, u 5 =0).

Reasoning in another direction is also of interest, and it is whether new ideal mechanical
constraints can be subsequently imposed on the system instead of active control forces, in
accordance with (36), so that motion control can be realized only by ideal constraints
without any action of active forces. In that case, the independent newly introduced
holonomic scleronomic constraints

& (q)=0, r=1,..,k-1 (38)
must be such that their reactions substitute the action of active control forces
a T
0f = cfus = p - (39)
oq
and lead to the conditions critical for further consideration
Cugq’ =0. (40)

They indicate that the power Of qi of control forces equals zero, wherefrom there follows

the restriction to the class of problems where it is possible to control constraints only. This
class of problems also includes the problem of brachistochronic motion as a special type of

time minimization problem ( f 0-1 ). The conditions (40) represent part of the conditions

®%(x,u) =0, where
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1, =0 ,4"(t) = 45,1 (49, 95-1)) +11(qy.7,) = E,, q (tl) =qi- (41
In real problems of the mechanical systems, rigid bodies, in particular, the simplest way is
to impose guides which ensure that the trajectories of the corresponding number of points
are in accordance with the previously determined brachistochronic motion. This can be
realized in an infinite number of ways, where the determination of reactions of the
constraints and multipliers alone is not of particular interest. The choice of point can also
be imposed by the simplest design solution.

In other types of optimality problems, where on the optimal trajectory the power qui of
control forces is different from zero, it is possible by introducing new ideal constraints to
reduce the number of £ active control forces by the number identical to the number of
newly introduced independent mechanical constraints.

5. Example 1: Brachistochronic motion of a nonholonomic rheonomic mechanical
system [15]

On a flat horizontal block of ice (plane 7 ) caught in the sea current, which starts to move
translatory in a straight line with constant acceleration a (see Fig. 1), a sleigh is moving so
that it remains in contact with & at three points as shown in Fig.1. The first two points, on
the supports N, and N3, can slide in arbitrary directions on plane . The third point,

(M), is the point of contact of the vertical blade S, connected with support N;, of the

sleigh with the plane 7. This point cannot move in the direction perpendicular to the flat
surface of the blade. The configuration of the sleigh in relation to plane 7z defines the set of

Lagrange coordinates (ql,qz,q3 ), where q1 =Xc, q3 = yc , are Cartesian coordinates of

point M , while q2 =@ represents the angle made by the axis Ox and the straight line

which is the intersection of the blade's flat surface with plane 7 . The mass of the sleigh is
m and radius of gyration p for the central axis of inertia perpendicular to the plane of

motion 7. Also, acting in the centre C of the mass is the viscous friction which is the
linear function of the mass centre’s absolute velocity, with the constant coefficient of
proportionality 5. Points C and M are on a joint vertical straight line. Define the

brachistochronic motion of the sleigh. Determine the control force F=F (#) to be acted

with at point 4 (CA =2m) of the sleigh so as to realize the mentioned brachistochronic
motion. Show that the control force can be realized by the imposition on the sleigh a new
bilateral ideal holonomic constraint identical with the trajectory of the point A, obtained
from finite equations of brachistochronic motion (on an iceberg a keyway is made, whose
axis is the trajectory of the point 4 and a key, tied to the sleigh, is sliding along the
keyway; or: along a smooth wire bent along the trajectory of the point 4 a small-sized ring
is sliding, tied to the point A4 of the sleigh).
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Figure 1. The sleigh of the iceberg.
The kinetic energy, potential energy and generalized dissipative forces read
2.2
m ., . .1.2 2,..2.2 3.2 .1 ma’t
T=3((q) +p(q7)" +(¢7)") +matq + 5

(42)
=0, O =-b(g' +ar), 0y =0, O =-b¢>,
where the nonholonomic constraint equation (6) is
¢’ —(tang”)¢' =0. (43)

In this example there are not limitations of constraint reactions at the contact point M of the
blade on the plane, nor are there constraints of active control forces Fj =u; and F, =u,,

i.e. there are no limitations (29), so that the reaction of nonholonomic constraint can be
eliminated from further procedure by using one of the conditions (26), where the power of
active control forces equals zero, and the relation (40) has the form

(v cos q2 +u, sin qz)q1 - C_Auzq2 + (¢ sin q2 — 1y COS q2 )q3 =0. 449
End conditions (28) are
to = 0,4 (t9) = 0,47 (1) = 6y, 4 (1) = 0,4 (1)) =3L,¢* (1) = 6,,¢° (1)) = L,
2,2
m, . . . . mat,
~ (@ @D+ PG 1) + (@ 1)) +ma od )+ == =Fo. 45

G (t9) —tan g€ (46))d" (19) = 0

The two-point boundary value problem of the system of 14 differential equations of the first
kind with an unknown terminal time moment was solved by the shooting method for the
following numerical values of the parameters

2
2By 175 M a1 p=im, L=3m, D=1 57, 6,=0,0,=".46)
m s s m 4

Fig.2 shows diagrams of active control forces and Fig.3 trajectories of points 4 and C.
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Figure 2. Diagrams ] = F{(7) and F, = F,(7), 7 =t/4
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Figure 3. Trajectories of points 4 and C
Figure 4. Control forces at point 4
Fig.4 shows control forces at point A, where
v CA4*
tangy, =-Ar = -9 (47)

Vor @ +(@)
and in [15] a proof has been derived that oy =a and F-V,, =0.

The second way to realize the control of motion is a subsequent imposition to the system an
additional ideal holonomic constraint (it is obvious here that Bernoulli’s idea on the
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realization of control forces by means of an ideal constraint has been utilized - the reaction

of that constraint will substitute the action of the mentioned active control force F ).
Also, it has been shown that if an additional constraint is written in the form

1,— 1 2 3 A i 2 1 2 1, ~4
$'@ =raGald'a*)-q> ~Cdsing® , x,4(¢'.¢%)=¢' +CAco ¢5,(48)
its multiplier p; = F cos(q2 +af) actually represents negative projection of the reaction of
new constraint on axis O,,.

6. Example 2: Brachistochronic motion of a variable-mass mechanical system [16]

The rod 4B has a mass m, length 2L and radii of gyration i- =L about an axis

perpendicular to the rod and passing through the mass center C of the rod (A_C =BC=1 ).
The rod moves in a uniform gravitational field in a vertical plane coinciding with the fixed
plane Oxy (see Fig.1) where y represents the vertical axis directed upwards and x is the

horizontal axis of a Cartesian coordinate system. The local Cartesian coordinate system
C¢n has its origin at point C and it is attached to the rod in the manner shown in Fig.1. In

the moment ¢, =0, the direction of the rod coincides with axis x (position 4,B, in Fig.1).

A

o
Vi

Figure 5. Variable-mass system

In Fig.1, the quantities q1 and q2 are Cartesian coordinates of the mass center C, i.e.,

Xc = q1 and yo = q2 , and q3 is the rotational angle of the rod. At both ends of the rod
there are two variable-mass particles 4 and B, whose masses change according to the
following law

my(t) =mpg(t)=m—kt (49)
where k is a specified positive constant. The expelled masses have the relative velocities
\7,’:, and ‘7531 of the constant magnitude

V;il = ngl =y (50)
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where v is a specified positive constant. During motion, the velocity \751 has the direction

of the rod, while the velocity 9;21 lies in the plane Oxy and has the direction perpendicular

to the rod.

It is needed to determine the brachistochronic motion of the system described as well as its
realization without the action of active control forces. The initial and terminal conditions
are specified as:

=0, ¢'(ty)=q*(t) = ¢ (1) =0,

37’”[( Fao)) +(i ) +L2(6?3(f0))2} - &, 1)

1 2 3 4
qgp)=q (p)=L g (ty)= >
The differential equations of motion in the expanded form read

Gm—2kt)i = kv(cos 4 —sing® ) +0F,
Gm—2kt)i* = kv(cos ¢ +sing’ ) —(3m—2kt)g + 05, (52)
(Bm—2kt) 12§ = koL + 0%,

where g =—gj, g is the acceleration of gravity.

The two-point boundary value problem is solved for the following values of the parameters:

2

Lzlm,mzlkg,EO:wkg’zn =12 k= k—g,g:9.81ﬂ2, (53)
s s s s

In the example considered, the realization of generalized control forces Qf has been

achieved via reactions of constraints using fixed and moving centrodes of the rod . The
moving centrode represents a curve attached to the rod which traces the instantaneous
center of zero velocity of the rod. The fixed centrode represents a curve fixed in the plane
Oxy which traces the instantaneous center of zero velocity of the rod. The motion of the

rod AB is equivalent to the rolling without slipping of the moving centrode on the fixed
one. The parametric equations of the fixed centrode are :

) .1
x:ql _?_a y:q2+%a (54)
q q
and of the moving one are:
1 (.. . 1. 2 .
&= T(ql sin q3 —q2 cos q3), n= .—3(q1 cosq3 +q2 smq3). (55)
q q

The fixed centrode and the moving centrode for the positions of the rod corresponding to
the time instances 7, =0 and 7, as well as the trajectories of points 4, B, and C are

shown in Fig.6.
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7. Example 3: Brachistochronic motion of the Chaplygin sleigh with restricted
reactions of nonholonomic constraints [17 ]

In the example considered, the realization of time motion minimization for Chaplygin
sleigh is achieved via the subsequent imposition of ideal constraint at the mass center C,
Fig.7, where the blade is positioned at point A and has the direction of the straight line AC.

Ya

Figure 7. The Chaplygin sleigh

Differential equations of the simplified optimal control problem read
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x=Vcosp, y=Vsing, p=w, d=u,V :—%azkzu,

(56)

J
K =1+ <, a=AC,

ma
where the control variable u represents the angular acceleration of the sleigh, m is the mass
of the sleigh and J_ is the central principal moment of inertia. Note that the last differential

equation was obtained by differentiating the kinetic energy with respect to time 7. Angular
acceleration and the reaction of nonholonomic constraint are linked by the relation
J.u=-aR, and here the reaction of nonholonomic constraint is limited |R| < Ny, so that

the control is restricted by relations

N N
il PPl ] (57)

JC JC .
Let the values of state variables x, y, ¢ and kinetic energy of the sleigh be specified at

the beginning of motion
2T,
=0 x(tg)=0 ¥(tp)=0 @ltg) =0 ¥*(t)+a*k*e’ (1) ==, (58)

as well as the values of state variables x, y, ¢ at the terminal position of the sleigh

1=, x(h)=a, y(t) = a, () = ¢ (39)
where ¢ is free.

The brachistochronic motion problem of the Chaplygin sleigh consists in determining of the
control u and the state variables x, y, ¢, @, v corresponding to them, so that the sleigh

starting from initial position with given initial kinetic energy 7;, reaches the terminal
position for the minimum time ¢ .

The problem was solved for the following values of the parameters m =2kg, a=1m,
T0=200kgm2/s3, k=2, ¢;=n/2 and various values of Nj. Fig.8 shows the

dependency of optimal control on angle ¢ for the case when the restriction of constraint
reaction is N =30kgm/s*. For Ny < (Nb )cr —17.35104kgm / 52, the control is of the

bang-bang type.
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Figure 8. Optimal control # = u(¢) for Ny =30kgm/ s
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