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Abstract  

Computational fluid dynamics (CFD) is nowadays a vital part of engineering practice and research in fluid mechanics. 
Application areas of CFD are vast - from fluid flows in various engineering devices, to flow of air in Earth atmosphere to 
flow of blood in human vessels. These are all very complex phenomena, but with adequate modeling and afterwards 
numerical solving, they can be predicted with appropriate accuracy. There are a lot of softwares specially designed for 
solving problems in fluid dynamics. Most of them are commercial ones, licensed with very expensive price and from the 
viewpoint of user, it is impossible to fully access and modify the numerical codes. The open source CFD is one of the 
solutions to overcome these obstacles. One of the open-source CFD softwares is OpenFOAM. In this paper a brief overview 
of it�s usage and capabilities are presented. Essentially, OpenFOAM is large C++ library from which users can use 
precompiled applications and utilities, or they can use the library to create their own applications and utilities. The code for 
creation libraries and utilities is open. 
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1. Introduction 

 
 CFD software has developed in outstanding way is past decades. Nowadays it is possible to simulate 
numerically complex fluid behavior in various engineering devices and in nature. It�s interesting to make a short 
historical development of CFD. Numerical methods itself were known since Newton�s time in 1700s. The 
solution methods of ordinary and partial differential equations were conceptually established, but it was only on 
paper. One of first CFD calculations were performed by Lewis Fry Richardson (1881-1953) at the beginning of 
20th century. He did the first numerical weather prediction system by dividing physical space into grid cells and 
using the finite difference approximations of the equations for flow in atmosphere, developed by Vilhelm 
Bjerknes, [1]. In 1910, Richardson published 50 pages paper to Royal Society. From our point of view it sounds 
like unbelievable thing, but Richardson performed hand calculations, while he was serving with the Quaker 
ambulance unit in northern France. Richardson attempted to use a mathematical model of the principal features 
of the atmosphere, and he used data taken at a specific time (7 a.m.) to calculate the weather six hours later. By 
calculations, he predicted a huge 14.5 kPa rise in pressure over six hours when the pressure actually stayed more 
or less static. However, detailed analysis by Lynch [2] has shown that the cause was a failure to apply smoothing 
techniques to the data, which rule out unphysical surges in pressure. When these are applied, Richardson�s 
forecast turns out to be essentially accurate which is a remarkable achievement considering the calculations were 
done by hand! Later on, in 1943 Finite element analysis (FEA) was first developed by R. Courant, who utilized 
the Ritz method of numerical analysis and minimization of variation calculus to obtain approximate solutions to 
vibration systems. Around 1960 first Scientific American articles on CFD were published, in 1965 CFD became 
significant research tools 1970 finite difference method for Navier-Stokes equations were derived. Based on the 
work of Harlow and Yakayma, [3] Launder and Spalding from Imperial College London proposed famous 
k ��  turbulent model. The team from Imperial College also established finite volume method, which is now 
the most common standard approach in CFD. Another key event in CFD industry was in 1980 when Suhas V. 
Patankar published �Numerical Heat Transfer and Fluid Flow�. It is possibly the most influential book on CFD 
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to date, and the one that spawned a thousand CFD codes. During 1980s, based on work at Imperial College in 
1970s, CFD software appeared on the market, and from that moment their continuous developments started till 
the present times. These are some milestones in that sense:  

� 1981 - PHOENICS was launched as first commercial CFD software 
� 1983 - Fluent was launched also as commercial CFD software, afterwards a number of commercial CFD 

software growth and fulfilled the competition of CFD market. 
� 1985 - use of CFD software in aeronautical industry (Boeing, General Electric, . . . ) 
� 1995 - use in other fields of industry (General Motors, Mercedes, Audi, BMW, Ford, Astra, Ericsson, . . 

. ) 
� 2004 - an open-source CFD software FOAM was released 
� 2006 - Fluent was acquired by ANSYS, Inc. This acquisition makes ANSYS as a strongest computer 

aided engineering player in numerical FEA and CFD simulation 

This was a brief overview of significant moments in development of CFD principles and accompanied software. 
In terms of software development in general, during 1980s, besides the commercial software, due to pioneering 
work of Richard Matthew Stalman so called �free software� also appeared on the market. According to 
Stallman, [4] it is essential for computer user that software he or she is using must be �free�. The key point is 
not on free as �free beer� (zero prize), but on four essential freedoms: (0) The freedom to run the program, for 
any purpose; (1) The freedom to study how the program works, and adapt it to your needs (access to the source 
code is a precondition for this); (2) The freedom to redistribute copies so you can help your neighbor; (3) The 
freedom to improve the program, and release your improvements to the public, so that the whole community 
benefits (access to the source code is a precondition for this). We think that these principles are really essential, 
specially in research and education at the University and we have to keep them in mind in our everyday work - 
not only from viewpoint of software we use, but on more broad contents. During 1990s Open Source Movement 
was formed from inside the Free Software Movement. Open Source is more or less based on free software 
principles - open source software mostly use some variants of  GNU General Public Licenses. But it�s accent is 
on practical point of software use 
rather than philosophical one. Open source community don�t reject use of non-free software (it is think mostly 
on non-open code) for some of the applications, but most of software has an open code which can be studied and 
extended. 

One of the open source CFD software is OpenFOAM, developed at the beginning of 21st century at the 
Imperial College. In following sections we�ll make a review of OpenFOAM, and it�s capabilities in modern 
CFD calculations. 
 
2. OpenFOAM as open source tool for CFD 
 
Development of tool what later become OpenFOAM started at the beginning of 1990�s at Imperial College 
London by group led by prof. David Gossman and Dr. Raad Issa. Two of principal developers were Henry 
Weller and Hrvoje Jasak. Large number of PhD thesis also contributed to development of the code. The code 
itself was written in C++, because the main idea was to create a C++ class library for computational continuum 
mechanics. This object-oriented approach has numerous advantages. According to Brajne Stroustrup, creator of 
C++, this approach  
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Figure 1: Overall structure of OpenFOAM. 
 

involves three main things: abstraction, inheritance and polymorphism. Abstraction enables that conceptual 
objects can be represented as classes. These classes are encapsulated, i.e. they contain and protect data that make 
up the object. For each class, member functions are provided. These member functions permit limited, well-
defined access to the encapsulated data. Thus it is possible to create data types that represent tensor fields and 
typical terms in the equations constructed to behave like their mathematical counterparts, hiding the numerical 
details of the implementation by encapsulation. Inheritance enables relationships between the various classes to 
be expressed, representing commonality between different classes of objects by class extension. By doing this 
existing classes can be given new behavior without the necessity of modifying the existing class. For example, 
this can be used to construct a complicated mathematical class by extending base classes that express simpler 
mathematical objects. On the higher level in OpenFOAM code this is used in making conceptual links between 
turbulence models, [5]. Polymorphism is the ability to provide the same interface to objects with different 
implementations, thus representing a conceptual equivalence between classes that in practical terms have to be 
coded differently. Examples of this in OpenFOAM include the implementation of boundary conditions. At the 
end, C++ also involving operator overloading, which means that it is possible to construct an interface that 
resembles standard mathematical notation. For example, sign �  is ordinary use for multiplication of two scalars, 
but it is also used as sign for outer product of two second order tensors. 

Comparing this approach with the approach in procedural languages (FORTRAN or C) we see 
numerous advantages. In procedural languages accent is on low-levels of coding, i.e. on manipulation between 
numbers organized in arrays. Highest level of data is vector or matrix. In OpenFOAM the viewpoint is at higher 
level, from physical objects - tensors which are describing various physical quantities in continuum mechanics. 
The result is C++ library in which is possible to implement a basically every continuum - mechanics modeling 
techniques in modern CFD. In fact any system of time-dependent PDEs including convection, diffusion, and 
source terms can be handled. 

This high level of abstraction makes it possible to represent complicated mathematical and physical 
models in code as high-level mathematical expressions, [5]. For example, if we consider laminar, unsteady flow 
of incompressible Newtonian fluid equation that describes the motion of that fluid is Navier-Stokes equation 

����������������������������������������������� � � � �.U
UU p U

t
��
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�
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Numerical solving of this equation in OpenFOAM code is represented with following lines 
 
fvVectorMatrix UEqn 
( 
  fvm::ddt(U) 
  + fvm::div(phi, U) 
  - fvm::laplacian(nu, U) 
); 
 
solve(UEqn == -fvc::grad(p)); 
 

It can be seen that representation of equation in code is very clear, and it corresponds to the equation written in 
mathematical notation in invariant form. 

At the top of OpenFOAM code are solvers, which are designed for solving for particular problems in 
CFD. For example, simpleFoam solvers is designed for steady flow of incompressible fluids. There are 
numerous solvers available in OpenFOAM, from basic solvers like scalarTransportFoam or 
potentialFoam to solvers the can handle turbulence modelling (LES, DES, URANS), multi-phase flows, 
heat transfer and multi-physics simulation like fluid-structure interaction, or conjugate heat transfer problems. 

For creation new solvers and application OpenFOAM is supplied with wmake compilation script that is 
based on make but is considerably more versatile and easier to use, [6]. A class is defined through a set of 
instructions such as object construction, data storage and class member functions. The file containing the class 
definition takes a .C extension, e.g. a class nc would be written in the file nc.C. This file can be compiled  
independently of other code into a binary executable library file known as a shared object library with the .so 
file extension, i.e.nc.so. When compiling a piece of code, say newApp.C, that uses the nc class, nc.C need not be 
recompiled, rather newApp.C calls nc.so at runtime. This is known as dynamic linking, [7]. 
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Figure 2: Header files, source files, compilation and linking 

 
3. Examples of OpenFOAM use 
 
We�ll now show results of simulation in OpenFOAM on one simple, but always interesting example in fluid 
mechanics - a vortex shedding behind circular cylinder. 
 
3.1 Laminar flow around circular cylinder in a channel 

 
We�ll take the geometry given in [8], which is shown in Figure 3. We are considering the flow as 2D. At 

the inlet, a parabolic velocity inlet is prescribed 
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where U is the mean velocity, H = 4.1D is the channel height.  

 

Figure 3: Geometry of the problem 

The main task here is to determine drag and lift forces, which are present due to asymmetrical location of 
cylinder in the channel. For that purpose we�ll use OpenFOAM library libForces.so. We choose value of 
Reynolds number Re 100� , for which we have vortex shedding behind circular cylinder. This vortex shedding 
will imply that lift and drag force will also oscillate. 

So, we are considering laminar, unsteady flow of incompressible Newtonian fluid. It is described with 
Navier-Stokes equations which can be written in the strong conservation form 
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suitable for discretization by finite volume method. Physical quantity p�  is so called kinematic pressure 
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� �/p p �� � ,� and �  is kinematic viscosity. For specified problem we are using the following boundary 

condition: 
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p
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�
�

outlet :    00,        yx
uu

p p
x x

� ���
� � �

� �
�

 walls :    0;        0,
p

U
n

�
� �

�

��
 

where 0p�  is constant value of kinematic pressure at the outlet, and index n in wall boundary condition for 

pressure designates a direction perpendicular to wall. 
Solver for this type of flow (laminar, unsteady incompressible flow) in OpenFOAMis icoFoam. For 

mesh generation we used application blockMesh and we performed calculations on four systematically 
refined block-structured grid. The coarsest grid had 5000 cells, and the finest 100000 cells. We�ve achieved the 
grid independence test on finest grid. We used Euler differencing schemes for unsteady term, upwind 
differencing  
scheme for convective therm, and central differencing scheme for gradient and laplacian therm in equation (2). 
For solution of Navier-Stokes equation (2) characteristic thing is that there is no independent equation for 
pressure, whose gradients contribute to each of three momentum equations, [8]. These difficulties are 
overcomed by use of numerical procedure called SIMPLE algorithm, [9], which is implemented in OpenFOAM. 
Preconditioned conjugate gradient methods are used for iterative solutions for system of linear equations. 

Flow is impulsively starts from rest, and after the development period it�s reaching the final state, which 
is periodic flow with shedding of vortices behind cylinder. 

Some results are shown in figures 4 and 5. In figure 5 changes of lift and drag force coefficient are 
shown. Because of asymmetrical location of cylinder lift coefficient oscillates between values 

,min 1.054lC � � and ,max 0.95lC � and the drag coefficient oscillates between ,min 3.17dC � and ,max 3.23dC � . 

The drag and lift forces oscillates at different frequencies - approximately, the drag has the twice the frequency 
as lift. Physical explanation is that drag force has one maximum and one minimum during growth and shedding 
of each vortex, while the sign of lift force depends on the location of vortex (above or below cylinder axis). The 
oscillation has also shifting in phase. That shifting is about 10% of the drag oscillation period. 

 

Figure 4: Time variations of drag and lift coeffients on cylinder (Re = 100). 

Instantaneous contour lines of pressure and vorticity are shown in figure 5. We can see that some of the 
isobars are closed curved lines which indicates the location of vortex centers in which pressure has a local 
minimum. 
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Figure 5: Instantaneous contours of pressure and vorticity in laminar flow around the cylinder in 
channel (Re = 100). 

 
3.2 Modification of existing solver and creation of new one 

 
We now want to solve temperature field in the same problem as in proceeding subsection. We are still solving 
laminar, incompressible and unsteady flow and we want to solve the energy equation for this type of flow. The 
energy equation, with neglecting the heat flux to the surrounding, has the form 
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where cp specific heat and _ is thermal conductivity of fluid. The last term in the equation represents viscous 
dissipation rate, a term which describes irreversible process of conversion of one part of fluid mechanical energy 
to internal energy. Usually, this term could be neglected in type of flow considered, but we�ll keep it here, 
because we want to show how it is implemented in OpenFOAM code. T designates the viscous stress tensor, and 
for incompressible Newtonian fluid it has the form 

                                                          T 2�� S � �TU U� � �� � � �� �� �

�� ��
                (4) 

where �  is fluid viscosity, U�
��

 is velocity gradient tensor, and � �TU�
��

 is it�s transpose. Before 

implementation in the code, equation (3) will be written in the form 
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where / pk c� ��  diffusion coefficient, and it�s dimensions in SI units is 2m /s� �� � . Dimension of constant 

/ pC c�� �  is Ks  (Kelvin-second) and we have also to implement these facts in the code. First, let us compare 

values of �  i C�  for water at 20 Ct � � . We get 7 21.364 10  m /s� �� �  and 102.3889 10  KsC� �� � , so in 
flows where there is no large velocity gradients the viscous dissipation rate could be neglected. But, as we said 
before, we�ll keep this term in the code. It�s interesting to see the results of temperature field for various values 

of parameter C� . 
It�s not recommended to make the changes in precompiled OpenFOAM solvers. Instead, users should 

do changes in their local directories. We copied the solver icoFoam in local directory and create a new solver 
with wmake script. The name of the solver can be arbitrary - we called it lamTempFoam. The new lines of the 
code which are solving the equation (5) are the following: 
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  // Odredi gradijent brzine 
  volTensorField gradU = fvc::grad(U); 
 
 
  // vrednosti nu, k i Cnu=nu/Cp se citaju u datoteci transportProperties 
 
  // Tenzor brzine deformisanja 
  volTensorField S = (gradU + gradU.T()); 
 
  // Jednacina energije 
  fvScalarMatrix TEqn 
  ( 
    fvm::ddt(T) 
    + fvm::div(phi, T) 
    - fvm::laplacian(k, T) 
    - Cnu * ( S && gradU ) // viskozna disipacija! 
  ); 
 
  // Resi jednacinu! 

TEqn.solve(); 
 
We used new solver on same problem like in subsection 3.1. Now we have additional boundary 

condition for temperature: constant, fixed value of 300 K  at the inlet and zero gradient at the outlet; we 
prescribed adiabatic channel walls and temperature of 350 K  at the cylinder. 

 

 

Figure 6: Instantaneous contours of temperature in cylinder wake with neglected viscous dissipation 

( 0)C� �  and Re 100� . 

In figure 7 instantenous conture of temperature is shown in case of neclecting viscous dissipation 

( 0)C� � . We used values of 6 210  m /s� ��   and 7 21.364 10  m /s� �� �  (for water) and it can be seen that 
convection dominates in temperature evolution and distribution. 

In next simulation we used the value of 102.3889 10  KsC� �� � and we obtained more or less the same 
temperature distribution, from which we concluded that viscous dissipation rate has no significant effect to 
temperature distribution in this flow. 

At the end we used physically unrealistic situation - we kept values of �  and �  the same like in 

previous simulation but we significantly increased value of C� , which we take to be 0.02 KsC� � . With this 
value we significantly increased the effect of viscous dissipation term which gives additional rise in temperature 
in flow field. This increasing is most significant near the walls and near the cylinder. This is expected, because 
we have larger velocity gradients near the walls. 
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Figure 7: Instantaneous contours of temperature in cylinder wake with high viscous dissipation 

( 0.02)C� �  and Re 100� . 

Real application of this solver could be in simulation of highly viscous flows, like flows of crude oil in 
pipelines. We are planning to additinally improve the solver by adding the temperature dependent fluid 
properties. 

 
 

4. Concluding remarks 
 
In this paper open-source CFD software OpenFOAM was used for calculations of vortex shedding which is 
formed in laminar flow around circular cylinder mounted in a channel. Obtained results have very good 
agreement with the results from the literature. Creation of new solver in OpenFOAM, which can handle energy 
equation in laminar flow of incompressible fluid is also presented. That was just a glimpse of capabilities of 
OpenFOAM. Extensive research in comparison between OpenFOAM and commercial CFD software by other 
authors showed that OpenFOAM can handle basically every problem like commercial software. Certanlly, 
commercial software have some utilities which OpenFOAM doesn�t; also working environment is more user-
friendly (well, it depends from viewpoint). But, the fact that OpenFOAM can not be used as �black-box�, in our 
opinion is it�s advantage. If you�re a researcher in CFD you have to master three important things - mathematics, 
fluid dynamics and computer science. And OpenFOAM is great tool and companion in that road. 
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