
 119

III International Symposium
Contemporary Problems of Fluid Mechanics

May 12-13th, 2011.
University of Belgrade,

Faculty of Mechanical Engineering, Serbia

An Overview of OpenFOAM CFD Software

A. �o�i�1 and I. Guranov1

1Department of Fluid Mechanics, Faculty of Mechanical Engineering, University of Belgrade, Serbia
Corresponding author: acocic@mas.bg.ac.rs

Abstract

Computational fluid dynamics (CFD) is nowadays a vital part of engineering practice and research in fluid mechanics.
Application areas of CFD are vast - from fluid flows in various engineering devices, to flow of air in Earth atmosphere to
flow of blood in human vessels. These are all very complex phenomena, but with adequate modeling and afterwards
numerical solving, they can be predicted with appropriate accuracy. There are a lot of softwares specially designed for
solving problems in fluid dynamics. Most of them are commercial ones, licensed with very expensive price and from the
viewpoint of user, it is impossible to fully access and modify the numerical codes. The open source CFD is one of the
solutions to overcome these obstacles. One of the open-source CFD softwares is OpenFOAM. In this paper a brief overview
of it�s usage and capabilities are presented. Essentially, OpenFOAM is large C++ library from which users can use
precompiled applications and utilities, or they can use the library to create their own applications and utilities. The code for
creation libraries and utilities is open.

Keywords: open-source, CFD, OpenFOAM

1. Introduction

 CFD software has developed in outstanding way is past decades. Nowadays it is possible to simulate
numerically complex fluid behavior in various engineering devices and in nature. It�s interesting to make a short
historical development of CFD. Numerical methods itself were known since Newton�s time in 1700s. The
solution methods of ordinary and partial differential equations were conceptually established, but it was only on
paper. One of first CFD calculations were performed by Lewis Fry Richardson (1881-1953) at the beginning of
20th century. He did the first numerical weather prediction system by dividing physical space into grid cells and
using the finite difference approximations of the equations for flow in atmosphere, developed by Vilhelm
Bjerknes, [1]. In 1910, Richardson published 50 pages paper to Royal Society. From our point of view it sounds
like unbelievable thing, but Richardson performed hand calculations, while he was serving with the Quaker
ambulance unit in northern France. Richardson attempted to use a mathematical model of the principal features
of the atmosphere, and he used data taken at a specific time (7 a.m.) to calculate the weather six hours later. By
calculations, he predicted a huge 14.5 kPa rise in pressure over six hours when the pressure actually stayed more
or less static. However, detailed analysis by Lynch [2] has shown that the cause was a failure to apply smoothing
techniques to the data, which rule out unphysical surges in pressure. When these are applied, Richardson�s
forecast turns out to be essentially accurate which is a remarkable achievement considering the calculations were
done by hand! Later on, in 1943 Finite element analysis (FEA) was first developed by R. Courant, who utilized
the Ritz method of numerical analysis and minimization of variation calculus to obtain approximate solutions to
vibration systems. Around 1960 first Scientific American articles on CFD were published, in 1965 CFD became
significant research tools 1970 finite difference method for Navier-Stokes equations were derived. Based on the
work of Harlow and Yakayma, [3] Launder and Spalding from Imperial College London proposed famous
k �� turbulent model. The team from Imperial College also established finite volume method, which is now
the most common standard approach in CFD. Another key event in CFD industry was in 1980 when Suhas V.
Patankar published �Numerical Heat Transfer and Fluid Flow�. It is possibly the most influential book on CFD

 120

to date, and the one that spawned a thousand CFD codes. During 1980s, based on work at Imperial College in
1970s, CFD software appeared on the market, and from that moment their continuous developments started till
the present times. These are some milestones in that sense:

� 1981 - PHOENICS was launched as first commercial CFD software
� 1983 - Fluent was launched also as commercial CFD software, afterwards a number of commercial CFD

software growth and fulfilled the competition of CFD market.
� 1985 - use of CFD software in aeronautical industry (Boeing, General Electric, . . .)
� 1995 - use in other fields of industry (General Motors, Mercedes, Audi, BMW, Ford, Astra, Ericsson, . .

.)
� 2004 - an open-source CFD software FOAM was released
� 2006 - Fluent was acquired by ANSYS, Inc. This acquisition makes ANSYS as a strongest computer

aided engineering player in numerical FEA and CFD simulation

This was a brief overview of significant moments in development of CFD principles and accompanied software.
In terms of software development in general, during 1980s, besides the commercial software, due to pioneering
work of Richard Matthew Stalman so called �free software� also appeared on the market. According to
Stallman, [4] it is essential for computer user that software he or she is using must be �free�. The key point is
not on free as �free beer� (zero prize), but on four essential freedoms: (0) The freedom to run the program, for
any purpose; (1) The freedom to study how the program works, and adapt it to your needs (access to the source
code is a precondition for this); (2) The freedom to redistribute copies so you can help your neighbor; (3) The
freedom to improve the program, and release your improvements to the public, so that the whole community
benefits (access to the source code is a precondition for this). We think that these principles are really essential,
specially in research and education at the University and we have to keep them in mind in our everyday work -
not only from viewpoint of software we use, but on more broad contents. During 1990s Open Source Movement
was formed from inside the Free Software Movement. Open Source is more or less based on free software
principles - open source software mostly use some variants of GNU General Public Licenses. But it�s accent is
on practical point of software use
rather than philosophical one. Open source community don�t reject use of non-free software (it is think mostly
on non-open code) for some of the applications, but most of software has an open code which can be studied and
extended.

One of the open source CFD software is OpenFOAM, developed at the beginning of 21st century at the
Imperial College. In following sections we�ll make a review of OpenFOAM, and it�s capabilities in modern
CFD calculations.

2. OpenFOAM as open source tool for CFD

Development of tool what later become OpenFOAM started at the beginning of 1990�s at Imperial College
London by group led by prof. David Gossman and Dr. Raad Issa. Two of principal developers were Henry
Weller and Hrvoje Jasak. Large number of PhD thesis also contributed to development of the code. The code
itself was written in C++, because the main idea was to create a C++ class library for computational continuum
mechanics. This object-oriented approach has numerous advantages. According to Brajne Stroustrup, creator of
C++, this approach

 121

Figure 1: Overall structure of OpenFOAM.

involves three main things: abstraction, inheritance and polymorphism. Abstraction enables that conceptual
objects can be represented as classes. These classes are encapsulated, i.e. they contain and protect data that make
up the object. For each class, member functions are provided. These member functions permit limited, well-
defined access to the encapsulated data. Thus it is possible to create data types that represent tensor fields and
typical terms in the equations constructed to behave like their mathematical counterparts, hiding the numerical
details of the implementation by encapsulation. Inheritance enables relationships between the various classes to
be expressed, representing commonality between different classes of objects by class extension. By doing this
existing classes can be given new behavior without the necessity of modifying the existing class. For example,
this can be used to construct a complicated mathematical class by extending base classes that express simpler
mathematical objects. On the higher level in OpenFOAM code this is used in making conceptual links between
turbulence models, [5]. Polymorphism is the ability to provide the same interface to objects with different
implementations, thus representing a conceptual equivalence between classes that in practical terms have to be
coded differently. Examples of this in OpenFOAM include the implementation of boundary conditions. At the
end, C++ also involving operator overloading, which means that it is possible to construct an interface that
resembles standard mathematical notation. For example, sign � is ordinary use for multiplication of two scalars,
but it is also used as sign for outer product of two second order tensors.

Comparing this approach with the approach in procedural languages (FORTRAN or C) we see
numerous advantages. In procedural languages accent is on low-levels of coding, i.e. on manipulation between
numbers organized in arrays. Highest level of data is vector or matrix. In OpenFOAM the viewpoint is at higher
level, from physical objects - tensors which are describing various physical quantities in continuum mechanics.
The result is C++ library in which is possible to implement a basically every continuum - mechanics modeling
techniques in modern CFD. In fact any system of time-dependent PDEs including convection, diffusion, and
source terms can be handled.

This high level of abstraction makes it possible to represent complicated mathematical and physical
models in code as high-level mathematical expressions, [5]. For example, if we consider laminar, unsteady flow
of incompressible Newtonian fluid equation that describes the motion of that fluid is Navier-Stokes equation

��� � � � �.U
UU p U

t
��

�� � � �� �� � �
�

� � ��������������� (1)�

Numerical solving of this equation in OpenFOAM code is represented with following lines

fvVectorMatrix UEqn
(
 fvm::ddt(U)
 + fvm::div(phi, U)
 - fvm::laplacian(nu, U)
);

solve(UEqn == -fvc::grad(p));

It can be seen that representation of equation in code is very clear, and it corresponds to the equation written in
mathematical notation in invariant form.

At the top of OpenFOAM code are solvers, which are designed for solving for particular problems in
CFD. For example, simpleFoam solvers is designed for steady flow of incompressible fluids. There are
numerous solvers available in OpenFOAM, from basic solvers like scalarTransportFoam or
potentialFoam to solvers the can handle turbulence modelling (LES, DES, URANS), multi-phase flows,
heat transfer and multi-physics simulation like fluid-structure interaction, or conjugate heat transfer problems.

For creation new solvers and application OpenFOAM is supplied with wmake compilation script that is
based on make but is considerably more versatile and easier to use, [6]. A class is defined through a set of
instructions such as object construction, data storage and class member functions. The file containing the class
definition takes a .C extension, e.g. a class nc would be written in the file nc.C. This file can be compiled
independently of other code into a binary executable library file known as a shared object library with the .so
file extension, i.e.nc.so. When compiling a piece of code, say newApp.C, that uses the nc class, nc.C need not be
recompiled, rather newApp.C calls nc.so at runtime. This is known as dynamic linking, [7].

 122

Figure 2: Header files, source files, compilation and linking

3. Examples of OpenFOAM use

We�ll now show results of simulation in OpenFOAM on one simple, but always interesting example in fluid
mechanics - a vortex shedding behind circular cylinder.

3.1 Laminar flow around circular cylinder in a channel

We�ll take the geometry given in [8], which is shown in Figure 3. We are considering the flow as 2D. At

the inlet, a parabolic velocity inlet is prescribed

� � � �2

2

6
2 2 , 0,x y

U
u y D H y D u

H
� �� � � � �� �

where U is the mean velocity, H = 4.1D is the channel height.

Figure 3: Geometry of the problem

The main task here is to determine drag and lift forces, which are present due to asymmetrical location of
cylinder in the channel. For that purpose we�ll use OpenFOAM library libForces.so. We choose value of
Reynolds number Re 100� , for which we have vortex shedding behind circular cylinder. This vortex shedding
will imply that lift and drag force will also oscillate.

So, we are considering laminar, unsteady flow of incompressible Newtonian fluid. It is described with
Navier-Stokes equations which can be written in the strong conservation form

�� � �
U

UU p U
t

���
�� � � �� �� � �

�

��
���� ��

� ������������ �������������������������(2)�

suitable for discretization by finite volume method. Physical quantity p� is so called kinematic pressure

 123

� �/p p �� � ,� and � is kinematic viscosity. For specified problem we are using the following boundary

condition:

 inlet : xu ��fully developed profile, 0yu � ;������ 0
p

x

�
�

�
�

outlet : 00, yx
uu

p p
x x

� ���
� � �

� �
�

 walls : 0; 0,
p

U
n

�
� �

�

��

where 0p� is constant value of kinematic pressure at the outlet, and index n in wall boundary condition for

pressure designates a direction perpendicular to wall.
Solver for this type of flow (laminar, unsteady incompressible flow) in OpenFOAMis icoFoam. For

mesh generation we used application blockMesh and we performed calculations on four systematically
refined block-structured grid. The coarsest grid had 5000 cells, and the finest 100000 cells. We�ve achieved the
grid independence test on finest grid. We used Euler differencing schemes for unsteady term, upwind
differencing
scheme for convective therm, and central differencing scheme for gradient and laplacian therm in equation (2).
For solution of Navier-Stokes equation (2) characteristic thing is that there is no independent equation for
pressure, whose gradients contribute to each of three momentum equations, [8]. These difficulties are
overcomed by use of numerical procedure called SIMPLE algorithm, [9], which is implemented in OpenFOAM.
Preconditioned conjugate gradient methods are used for iterative solutions for system of linear equations.

Flow is impulsively starts from rest, and after the development period it�s reaching the final state, which
is periodic flow with shedding of vortices behind cylinder.

Some results are shown in figures 4 and 5. In figure 5 changes of lift and drag force coefficient are
shown. Because of asymmetrical location of cylinder lift coefficient oscillates between values

,min 1.054lC � � and ,max 0.95lC � and the drag coefficient oscillates between ,min 3.17dC � and ,max 3.23dC � .

The drag and lift forces oscillates at different frequencies - approximately, the drag has the twice the frequency
as lift. Physical explanation is that drag force has one maximum and one minimum during growth and shedding
of each vortex, while the sign of lift force depends on the location of vortex (above or below cylinder axis). The
oscillation has also shifting in phase. That shifting is about 10% of the drag oscillation period.

Figure 4: Time variations of drag and lift coeffients on cylinder (Re = 100).

Instantaneous contour lines of pressure and vorticity are shown in figure 5. We can see that some of the
isobars are closed curved lines which indicates the location of vortex centers in which pressure has a local
minimum.

 124

Figure 5: Instantaneous contours of pressure and vorticity in laminar flow around the cylinder in
channel (Re = 100).

3.2 Modification of existing solver and creation of new one

We now want to solve temperature field in the same problem as in proceeding subsection. We are still solving
laminar, incompressible and unsteady flow and we want to solve the energy equation for this type of flow. The
energy equation, with neglecting the heat flux to the surrounding, has the form

��� 2
p

T
c U T T

t
� ��� �� �� � � �� ��� �

��
T: ,U�

��

 (3)�

where cp specific heat and _ is thermal conductivity of fluid. The last term in the equation represents viscous
dissipation rate, a term which describes irreversible process of conversion of one part of fluid mechanical energy
to internal energy. Usually, this term could be neglected in type of flow considered, but we�ll keep it here,
because we want to show how it is implemented in OpenFOAM code. T designates the viscous stress tensor, and
for incompressible Newtonian fluid it has the form

 T 2�� S � �TU U� � �� � � �� �� �

�� ��
 (4)

where � is fluid viscosity, U�
��

 is velocity gradient tensor, and � �TU�
��

 is it�s transpose. Before

implementation in the code, equation (3) will be written in the form

 � �2 :
T

p

T
U T k T U U U

t c

�� � �� �� � � � � � � �� �� ��

�� �� �� ��

 (5)

where / pk c� �� diffusion coefficient, and it�s dimensions in SI units is 2m /s� �� � . Dimension of constant

/ pC c�� � is Ks (Kelvin-second) and we have also to implement these facts in the code. First, let us compare

values of � i C� for water at 20 Ct � � . We get 7 21.364 10 m /s� �� � and 102.3889 10 KsC� �� � , so in
flows where there is no large velocity gradients the viscous dissipation rate could be neglected. But, as we said
before, we�ll keep this term in the code. It�s interesting to see the results of temperature field for various values

of parameter C� .
It�s not recommended to make the changes in precompiled OpenFOAM solvers. Instead, users should

do changes in their local directories. We copied the solver icoFoam in local directory and create a new solver
with wmake script. The name of the solver can be arbitrary - we called it lamTempFoam. The new lines of the
code which are solving the equation (5) are the following:

 125

 // Odredi gradijent brzine
 volTensorField gradU = fvc::grad(U);

 // vrednosti nu, k i Cnu=nu/Cp se citaju u datoteci transportProperties

 // Tenzor brzine deformisanja
 volTensorField S = (gradU + gradU.T());

 // Jednacina energije
 fvScalarMatrix TEqn
 (
 fvm::ddt(T)
 + fvm::div(phi, T)
 - fvm::laplacian(k, T)
 - Cnu * (S && gradU) // viskozna disipacija!
);

 // Resi jednacinu!

TEqn.solve();

We used new solver on same problem like in subsection 3.1. Now we have additional boundary

condition for temperature: constant, fixed value of 300 K at the inlet and zero gradient at the outlet; we
prescribed adiabatic channel walls and temperature of 350 K at the cylinder.

Figure 6: Instantaneous contours of temperature in cylinder wake with neglected viscous dissipation

(0)C� � and Re 100� .

In figure 7 instantenous conture of temperature is shown in case of neclecting viscous dissipation

(0)C� � . We used values of 6 210 m /s� �� and 7 21.364 10 m /s� �� � (for water) and it can be seen that
convection dominates in temperature evolution and distribution.

In next simulation we used the value of 102.3889 10 KsC� �� � and we obtained more or less the same
temperature distribution, from which we concluded that viscous dissipation rate has no significant effect to
temperature distribution in this flow.

At the end we used physically unrealistic situation - we kept values of � and � the same like in

previous simulation but we significantly increased value of C� , which we take to be 0.02 KsC� � . With this
value we significantly increased the effect of viscous dissipation term which gives additional rise in temperature
in flow field. This increasing is most significant near the walls and near the cylinder. This is expected, because
we have larger velocity gradients near the walls.

 126

Figure 7: Instantaneous contours of temperature in cylinder wake with high viscous dissipation

(0.02)C� � and Re 100� .

Real application of this solver could be in simulation of highly viscous flows, like flows of crude oil in
pipelines. We are planning to additinally improve the solver by adding the temperature dependent fluid
properties.

4. Concluding remarks

In this paper open-source CFD software OpenFOAM was used for calculations of vortex shedding which is
formed in laminar flow around circular cylinder mounted in a channel. Obtained results have very good
agreement with the results from the literature. Creation of new solver in OpenFOAM, which can handle energy
equation in laminar flow of incompressible fluid is also presented. That was just a glimpse of capabilities of
OpenFOAM. Extensive research in comparison between OpenFOAM and commercial CFD software by other
authors showed that OpenFOAM can handle basically every problem like commercial software. Certanlly,
commercial software have some utilities which OpenFOAM doesn�t; also working environment is more user-
friendly (well, it depends from viewpoint). But, the fact that OpenFOAM can not be used as �black-box�, in our
opinion is it�s advantage. If you�re a researcher in CFD you have to master three important things - mathematics,
fluid dynamics and computer science. And OpenFOAM is great tool and companion in that road.

References

[1] Hunt J.C.R (1998) Lewis Fry Richardson and His Contributions to Mathematics, Meteorology and Models

of Conflict, Annual Review of Fluid Mechanics, Vol. 30,
[2] Lynch P. (2008) The Origins of Weather Prediction and Climate Modeling, Journal of Computational

Physics, vol. 227, pp. 3431-3444
[3] Harlow, F.H., and Nakayama P.I (1967) Turbulence Transport Equations, Phys. Fluids, Vol. 10, pp. 2323-

2332
[4] Stallman R.M. (2002) Free Software, Free Society - Selected Essays of Richard. M Stallman, GNU press
[5] Weller, H.G.; Tabor G.; Jasak, H. and Fureby, C. (1998) A Tensorial Approach to CFD using Object

Orientated Techniques, Computers in Physics, Vol. 12 No. 6, pp 620 - 631
[6] OpenFOAM User Guide, 2010, http://www.openfoam.com/docs/
[7] OpenFOAM Programming Guide, 2010, http://www.openfoam.com/docs/
[8] Ferziger J.H., Peri� (2002) Computational Methods for Fluid Dynamics, 3rd Edition, Springer, 2002
[9] Patankar S.V. and Spalding D. B. (1972) A Calculation Procedure for Heat, Mass and Momentum Transfer

in 3-Dimensional Parabolic Flows, Int. J. Heat Mass Transfer, Vol. 15, pp. 1787-1806.

