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Abstract:  
In present paper we analyze dynamics of groundwater level oscillation recorded at two 
piezometric stations in Pancevacki rit: ‘’Cuvarnica’’, and ‘’Borca’’ in period 2007-2013. Primary 
goal of the performed research was to determine the character of the main mechanism behind 
these oscillations, which could further serve as a solid base for creating an appropriate prediction 
model. Dynamics of the recorded time series is examined using methods of nonlinear time series 
analysis and delay embedding theorem. After embedding the observed time series into three-
dimensional phase space with embedding delay τ=4,  results of surrogate data testing showed that 
analyzed time series originate from a stationary Gaussian linear process that could be distorted by 
a monotonic, instantaneous, time-independent nonlinear function. This is further confirmed by 
low values of determinism coefficient and corresponding vector field composed of vectors of 
different length, indicating high level of stochasticity in the observed data. The obtained results 
provide solid foundation for future research, with the final goal of creating an appropriate 
prediction model. 
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1. Introduction  
 

Groundwater dynamics is typically considered as one of the main parameters that control the 
slope stability. In particular, sudden increase of groundwater level due to the fast infiltration from 
the heavy precipitation or snow melt decreases the effective values of normal stress in soil and 
increases the hydrodynamic forces, which could further trigger landslides or similar colluvial 
processes. Common measures of remediation which are taken against such abrupt changes in 
groundwater dynamics include small concrete channels at the surface, which serve as collectors 
that enable precipitation flow outside of the endangered area. However, such measures are taken 
only for those terrains which are either already endangered by landsliding, or which are within the 
scope of engineering design, for which the soil stability needs to be ensured. In all other cases, 
which include slopes along the river valleys, artificial lakes, or within the urban areas, as it is the 
case in Belgrade, negative effect of groundwater level dynamics is often not propely taken into 
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account. For such areas, groundwater level oscillation should be thoroughly studied in order to 
suggest and take appropriate measures, which would be both economic and provide safety against 
possible negative effects. For this purpose, certain prediction model should be developed, which 
could serve both as a temporal model (enabling short-or long term forecasting)  and a spatial 
model, enabling the selection of the most endangered locations.   

There were several attempts of predicting the groundwater level oscillation, mainly by 
applying neural network approach [1-6]. Although these models give reliable results, there is still 
no strong evidence about the character of the groundwater level oscillation, i.e. is it governed by 
purely deterministic process or there is still a certain stochastic component that mainly determines 
its behavior? We consider that this issue represents the first and the most important step in 
creating any reliable prediction model, since different mathematical approaches are used when 
dealing with deterministic or stochastic systems. For this purpose, it is necessary to analyze large 
number of recorded time series, which is rather convenient for territory of Serbia, since State 
Hydrometerological Survey [7] permanently tracks the groundwater level dynamics at 399 
different stations – piezometers, where groundwater level oscillation is monitored since 1991. 
Within this research, we analyze recordings from two piezometers installed at Pancevacki rit 
(‘’Cuvarnica’’ and ‘’Borca’’).  

In present paper, groundwater level dynamics is analyzed by using methods of nonlinear time 
series analysis. These methods were not previously used in the field of fluid dynamics, even 
though they were successfully applied for confirming the deterministic chaotic behavior of a 
simple periodically driven resistor-inductor diode [8], or in some other fields of geophysics, like 
seismology [9] or blast-induced vibrations [10]. These past studies have proved that nonlinear 
time series analysis methods have vast potential in studying the various types of experimentally 
recorded time series.  
 
2. Experimental data 
 

Time series which are analyzed in present paper are recorded at two piezometers at Cuvarnica 
and Borca station in Pancevacki rit, for the period 2007-2013 (Figure 1). These recordings were 
chosen as a preliminary case study, since method of nonlinear time series analysis is for the first 
time applied in fluid dynamics. Such short observation period is chosen since older recordings are 
not complete, so the present analysis would not be able to provide reliable results.  

 
Fig. 1. Distribution and main technical properties of the observed piezometric stations in Pancevacki rit. 
 

Observation of groundwater level was performed every 5 days at Cuvarnica station and every 
10 days at Borca station. Recorded time series of groundwater level oscillation are given in 
Figure 2. For days without observation, we used medium value between the succeeding and 
preceding recordings. Here we consider only the observations in the period 2007-2013, since 
there are no observations at these stations in 2005, and for first three and six months in 2006 at 
Borca and Cuvarnica station, respectively. 



S. Kostić, I. Guranov, N. Vasović- Nonlinear time series analysis of fluid dynamics: stochastic groundwater level oscillation 

3 

 
Fig. 2. Recorded time series of groundwater level oscillations at the following stations in Pancevacki rit: (a) 
Borca, (b) Cuvarnica. It is clear that both of the observed time series have similar trend. 
 

From the hydrogeological viewpoint, investigated area belongs to ‘’Pancevacki rit’’ 
hydrogeological province, which represents alluvial plain of Danube and Tamis. The observed 
unconfined (phreatic) aquifer occurs within the layer of Quaternary clayey sands, which represent 
hydrogeological collector-reservoir of integranular porosity. Therefore, groundwater is commonly 
replenished by precipitation, which directly controls the dynamics of level oscillation [11].  
 
3. Surrogate data analysis 
 

Surrogate data analysis is performed by assuming that the observed data belong to some class 
of stochastic systems, i.e.: (1) data are independent random numbers drawn from some fixed but 
unknown distribution; (2) data originate from a stationary linear stochastic process with Gaussian 
inputs and (3) data originate from a stationary Gaussian linear process that has been distorted by a 
monotonic, instantaneous, time-independent nonlinear function [12]. In order to achieve a 
significance level of α=0.95 when confirming or rejecting each of the aforementioned three null 
hypotheses, we generate 19 surrogates for each of the three null hypotheses, after which original 
data and generated surrogates are compared by calculating the zeroth-order prediction error γ 
[12]. If the zeroth- order prediction error for the original recordings (γ0) is smaller in comparison 
to the calculated error for surrogate data (ε), then a null hypothesis can be rejected, meaning that 
the analyzed time series does not originate from the assumed class of processes (i.e. starting null 
hypothesis).  

For this purpose, surrogates are generated by using Matlab toolkit MATS, developed by 
Kugiumtzis and Tsimpiris [13], while γ is calculated in Matlab environment using script 
developed by Kaplan [14]. Surrogate data analysis is performed for time series both embedded 
into three-dimensional phase space with embedding delay τ=4 determined by the symplectic 
geometry method [15] and mutual information technique [16], respectively. Neighbors for 
prediction were sought amongst those points that were inside 5% of maximal distance to the 
referent point (i.e. point for which the prediction is made). In particular, points were selected from 
the range that is two and four times larger than the measurement error for Borca and Cuvarnica, 
respectively, in order to ensure large enough neighborhood for prediction (and, therefore, proper 
calculation of zeroth-order prediction error). 

Regarding the first null hypothesis, it could be assumed solely by visually inspection of Figure 
2 that the observed time series do not represent an example of random data. In order to test this 
claim, surrogates are generated by randomly shuffling the data without repetition, after which the 
zeroth-order prediction error is calculated both for the original recording and for the generated 
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surrogates. Indeed, as it was already assumed, γ0 is smaller than γ for all the examined cases, 
allowing us to reject the null hypothesis with significance level α=1 (Figure 3a). 

For the purpose of testing the second null hypothesis, we employ the phase randomization 
analysis by randomizing Fourier surrogates of the original data and then by computing the inverse 
transform to obtain randomized time series [17]. In contrast to the previous case, prediction error 
for time series recorded at Borca station falls within the prediction error of more than a single 
surrogate, which further implies that we cannot reject the null hypothesis. On the other hand, γ0 > 
γ for only one surrogate (and not for all prediction steps) at Cuvarnica station, indicating that we 
could reject the null hypothesis with significance level α=0.95  (Figure 3b). 

 
Fig. 3. Testing the first (a) and the second (b) null hypothesis. Red line denotes the zeroth-order prediction 
for the original time series and black lines - zeroth-order prediction for the surrogates. We could reject the 
first null hypothesis (γ0 < γ) for both stations, as well as the second null hypothesis for recorded data at 
Cuvarnica station. For the observed time series at Borca station, we could not reject the second null 
hypothesis, since γ0 > γ for more than one surrogate.  
 

Since the second null hypothesis was rejected for the observed groundwater level oscillation at 
Cuvarnica station, we also need to test the third hypothesis, in order to examine whether  the 
recorded data originate from a stationary Gaussian linear process that has been distorted by a 
monotonic, instantaneous, time-independent nonlinear function. For this purpose, we calculate the 
amplitude adjusted Fourier-transformed (AAFT) surrogates [18], which is performed by rescaling 
the original data to a normal distribution, after which a Fourier-transformed surrogate of the 
rescaled data is constructed. The final surrogate is then scaled to the distribution of the original 
data. As apparent from Figure 4a, the null hypothesis could be rejected, since γ0 < γ for all the 
examined surrogates, with significance level α=1. However, generation of amplitude adjusted 
surrogates results in changes to the power spectrum of the final surrogate, further causing the 
power spectrum whitening of the original data, which could lead to unreliable results and 
assumptions. In order to improve the obtained results, a method of iterated AAFT surrogates 
(IAAFT) is applied by performing a series of iterations in which the power spectrum of AAFT 
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surrogate is adjusted back to that of the original time series before the distribution is rescaled 
back to the original distribution. This is obtained by adjusting back the amplitudes of the Fourier 
transformed AAFT surrogates to the Fourier transformed surrogates of the rescaled original data. 
The obtained surrogates are then inverse Fourier transformed and rescaled back to the original 
data distribution by sorting the original data according to the ranking of the Fourier-transformed 
surrogate. These two steps are iterated for several times (in our case 500), until the whitening of 
the power spectrum becomes sufficiently small. Since the obtained results indicate that γ0>γ for 
more than one surrogate, the third null hypothesis could not be rejected in this case. 

 
Fig. 4. Testing the third null hypothesis: (a) AAFT method; (b) IAAFT method. Red line denotes the 
zeroth-order prediction for the original time series and black lines - zeroth-order prediction for the 
surrogates. AAFT method resulted in γ0 < γ  for the original data and generated surrogates allowing us to 
reject the null hypothesis, while γ0 > γ  with IAAFT method for more than one surrogate, indicating that we 
could not reject the third null hypothesis.  
 

In order to verify the results obtained by surrogate data testing, we need to conduct the 
determinism test [19], which assumes that if a time series originates from a deterministic process, 
it can be described by a set of more or less complex first-order ordinary differential equations, 
whose solution could be presented in a form of a corresponding vector field. If the observed time 
series originated from a deterministic system, the obtained vector field should consist solely of 
vectors that have unit length, indicating the average length of all directional vectors κ to be equal 
to 1. If solutions in the phase space are to be unique, then the unit vectors inside each box may 
not cross, since that would violate the uniqueness condition at each crossing. In other words, if 
the system is deterministic, the average length of all directional vectors κ will be 1, while for a 
completely random system κ ≈ 0. However, it should be emphasized that Kaplan and Glass [19] 
indicated that an average length of the vector of the deterministic system equals 1 only for the 
infinite long data set.  

So as to be able to conduct the determinism test, we firstly need to embed the observed scalar 
series into the appropriate phase space via the embedding procedure, originally proposed by 
Takens [20]. The embedding is performed by using the open-source software developed by 
Kodba et al.[8].  

As a first step of embedding, we need to determine the optimal embedding delay. According 
to [16], the value of τ that produces the first local minimum of mutual information should be used 
for phase portraits. The values of optimal embedding delay calculated by using the average 
mutual information method for all the observed time series are shown in Figure 5(a).  

The next step in our analysis, after calculating the optimal value of embedding delay, is to 
determine the minimal required embedding dimension m in order to fully resolve the complex 
structure of the attractor. In this paper, we use the procedure suggested in [22] that identifies the 
number of ’’false nearest neighbors’’, points that appear to be nearest neighbors because the 
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embedding space is too small. Generally, there are two criteria that are usually applied when 
using ‘’false nearest neighbor’’ method. We consider that normalized distance between the 
embedding coordinates of two presumably neighboring points is larger than a given threshold 
(Rtr), if these two point are false neighbors. The results obtained with the false nearest neighbor 
method for acceleration time histories at the observed stations are presented in Figure 5(b). It is 
clear that the percentage of false nearest neighbors decreases to value <<0.01 at embedding 
dimension m=3 in both cases.  

 
Figure 5. (a) Determination of the proper embedding delay for recorded groundwater dynamics at Borca 
(solid line) and Cuvarnica (dashed line) - the average mutual information has the first minimum at  τ=4 in 
both cases; (b) Determination of the minimal required embedding dimension for recorded groundwater 
dynamics at Borca (solid line) and Cuvarnica (dashed line). It is clear that the fraction of false nearest 
neighbors decreases to value <<0.01 at m=3 in both cases. 
 

In order to conduct the determinism test, we coarse grained the previously calculated 
embedding space into maximum 423 grid for data observed at both stations. For calculating the 
determinism factor, we included only those boxes visited at least one time by the trajectory. The 
obtained value of determinism factor κ is 0.78 for both stations, indicating that the level of 
stochasticity is still high as experimental recordings of deterministic signals usually have κ > 0.9 
[12]. This is further confirmed by constructing the corresponding vector field composed of 
vectors of different sizes for both monitoring stations (Figure 6). 
 
6. Conclusion 

 
In present paper we analyzed the groundwater level dynamics in order to determine the main 

pattern of the background mechanism. For this purpose, we applied methods of nonlinear time 
series analysis, including surrogate data testing, delay embedding theorem and determinism test. 
As a case study, we chose observed recordings at two piezometers installed in Pancevacki rit 
hydrogeological province, at Borca and Cuvarnica station. Both piezometers are 12m deep, i.e. 
the observed groundwater dynamics belongs to the same aquifer. Recorded time series are 
analyzed for the period 2007-2013, since no or only few recordings are available for 2005 and 
2006 (although permanent monitoring of groundwater dynamics is performed since 1994).  
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Fig. 6. Determinism test. The approximated vector field for the embedding space reconstructed with τ = 4 
and m = 3. The pertaining determinism factor is κ = 0.78 for the recorded groundwater level oscillation at 
(a) Borca and (b) Cuvarnica station. 
 

The obtained results indicate that main mechanism in the background of both time series 
belong to the class of stochastic linear processes, with Gaussian inputs (Borca), which could be 
distorted by a monotonic, instantaneous, time-independent nonlinear function (Cuvarnica). Such 
findings are firstly implied by surrogate data testing, and further confirmed by determinism test, 
where rather low value of determinism factor (κ=0.78) implies the high level of stochasticity in 
the observed time series. 

In conclusion, one should note that although the obtained results are convincing and 
confirmed by different methods, further analysis of groundwater dynamics should certainly 
include longer period of time and with the recordings observed at stations in different aquifers, 
i.e. various geological surroundings. In that way, our preliminary results could be further 
confirmed, making a way towards creating the appropriate prediction model, which should be the 
final goal of the present analysis.  
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