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ABSTRACT 

 
The paper considers mass minimization of an axially functionally 

graded (AFG) Timoshenko beam of a variable cross-sectional area, with a 
specified fundamental frequency. The analyzed case of coupled axial and 
bending vibrations involves contour conditions as the cause of coupling. The 
problem is solved applying Pontryagin’s maximum principle, where the beam 
cross-sectional area is taken for control. The two-point boundary value problem 
is obtained, and the shooting method is used to solving it. The property of self-
adjoint systems is deployed. The percent saving of the beam mass is 
determined, achieved by using the beam of an optimum variable square cross-
section as compared to the beam of a constant cross-section. The procedure 
developed by the author in his earlier papers is extended herein to the case of a 
limited cross-sectional area. The second generalization relates to the general 
case of contour conditions at the beam ends. 

 
 

1. Introduction 
 
Some elastic bodies can be modeled to obtain sufficient accuracy by using 
Euler-Bernoulli or Timoshenko beam [1] in the analysis of their vibrations.  
Determination of optimal shapes applying different optimization criteria is an 
engineering task of utter importance. In a static sense, these problems are 
associated with the optimization of columns against buckling. Papers [2,3] 
employ a buckling optimization approach based on the Hencky bar-chain model 
of beams, whereas [4-8] consider a series of shape optimization problems of 
columns against buckling by implementing Pontryagin’s maximum principle.  
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In this paper, the dynamic aspect of beam optimization includes references 
related to the problem of mass minimization of rods when the value of 
fundamental frequency of these rods oscillation is specified. Among the most 
outstanding references relevant to this problem are [9-11] where the minimum 
mass optimization problem is considered within the framework of axial 
vibrations of cantilever beams with a variable cross-section carrying 
concentrated mass at their free ends. Moreover, [9,10] deal with the tapered 
type of beams, whereas [11] is concerned with stepped ones. Paper [12] 
analyzes the impact of a variable cross- section (the linear relationship between 
the second area moment and the area) of Euler-Bernoulli beams in bending 
vibrations on the extremal values of the fundamental frequency, and [13] studies 
the conditions of equivalence between maximum frequency and minimum mass 
optimization problems. In [14] an optimality criterion method for weight 
minimization of structures under the fundamental frequency constraint in the 
form of inequality is presented. Mass minimization problems with multiple 
frequency constraints of equality and inequality types are reported in [15,16]. 
Paper [17], besides frequency constraints, studies simultaneously stress, 
displacement and cross-sectional area multiple constraints. The mass 
minimization of structures together with maximization of structural strain 
energy (multiobjective optimization problems) can be found in [18]. Paper [19] 
provides an example of the application of bio-inspired algorithms (firefly 
algorithm, bat algorithm and cuckoo search algorithm) in the problem of mass 
minimization of a single-girder bridge crane. Today, this type of algorithms has 
increasing application in complex optimization problems with multiple 
objective functions, design variables and equality and inequality constraints, for 
more details refer to [20].  
Based on a review of available literature, it is evident that no results are 
reported in the field of mass minimization of beams with prescribed 
fundamental frequency, whose oscillatory behavior can be represented in the 
form of coupling between fundamental types of oscillations (axial vibrations, 
bending vibrations, torsion vibrations). The fact mentioned above makes this 
field of research potentially attractive. Otherwise, the coupling of different types 
of oscillations can be conditioned, for instance, by the cross-section geometry of 
a beam (cross-section with one symmetry axis, which causes coupling of 
bending and torsion vibrations [21]), or by complex contour conditions at the 
beam ends (coupling of bending and axial vibrations [22]).  
Our paper [23] considers the second cause of coupled oscillations for the case of 
simply supported Euler Bernoulli beam with inclined right end. Moreover, the 
approach from [4-8] based on applying Pontryagin’s maximum principle is 
extended to the mass minimization problem of the mentioned simply supported 
beam with coupled bending and axial vibrations at prescribed fundamental 
frequency. Here, it is worth highlighting that in [4-8] it was for the first time in 
literature that the occurrence of the self-adjoint system is observed in the 
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problems of determining optimal shapes. This allows for twice fewer 
differential equations of the TPBVP problem of the Maximum principle as 
compared to classical problems and it is known that the difficulties in numerical 
solving are the main reason why the authors of the works dealing with the 
application of the mathematical theory of optimal processes often avoid using 
Pontryagin’s principle.     
Our later works [24-25] research an AFG Timoshenko cantilever beam instead 
of Euler Bernoulli homogeneous beams.  
This paper extends additionally the procedure of shape optimization to the 
general case of contour conditions and introduces the limits of cross-sectional 
dimensions.  It is necessary to limit the cross-sectional area from the bottom 
side so as not to disturb the strength of the beam. The upper limit can be defined 
by the beam initial shape that yields optimal shape by material removal, space 
limits, or to ensure the validity of the appropriate theory (Euler Bernoulli or, in 
this case, Timoshenko theory).  

 
 
2. Problem statement for determining the optimal profile shape  

 
The Timoshenko beam [1] (Fig.1) of length 𝐿, variable cross-sectional area 
𝐴(𝑧) and axial moment of inertia 𝐼𝑥(𝑧) = 𝑠𝐴(𝑧)2, where coefficient s depends 
on the cross-sectional shape (for the square cross-section = 1/12 , while in the 
case of circular cross-section 𝑠 = 1/4𝜋 ), is considered. In the case of AFG 
material, the density 𝜌(𝑧), Young’s modulus of elasticity 𝐸(𝑧) and the shear 
modulus 𝐺(𝑧), are variable along the beam axis. At the right end a body of mass 
𝑀𝑟 and moment of inertia 𝐽𝐶𝑟 is fixed eccentrically to the central axis, where the 
position of the center of mass is defined by quantities 𝑒𝑟 and ℎ𝑟. The 
corresponding stiffnesses of springs at the right end are 𝑐𝑟, 𝑐1𝑟 and 𝑐2𝑟. All 
quantities given at the left end have index l instead of index 𝑟. 
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Fig. 1 AFG Timoshenko beam of variable cross-section with bodies 

eccentrically located at the beam ends  
 

Differential equations of Timoshenko beams, oscillating in the axial and 
bending direction, in the case of the linear theory, can be derived based on 
dynamic equations of the elementary particle of the beam of mass 

  ( )dm z A z dz  and a corresponding moment of inertia of masses

  ( )x xdJ z I z dz : 
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where  ,u z t  and  ,w z t  are axial and transverse displacements,  ,z t  is the 

cross-sectional angle of rotation,  ,AF z t  represents the axial force: 
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                                                                          (2) 

the bending moment is given by the expression: 
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where for Timoshenko beams [1] the slope angle of the elastic line is: 

 
( , ) ( , )

, ,
( ) ( )
Tw z t F z t

z t
z kA z G z




 


                                                                      (4) 

where 𝐹𝑇(𝑧, 𝑡) is the transverse force and 𝑘 is the Timoshenko coefficient.  
The system of linear differential equations (1-4) is solved by the method of 

separation of variables [1]:  
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 and 𝜔 represents a circular frequency. If we want all 

functions (5) to retain their physical dimensions and units, the function 𝑇(𝑡) 
will be considered to be dimensionless. 
Further procedure yields the following differential equations: 
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Optimization problem, considered in this paper, includes defining the function 
of change of the cross-sectional area 𝐴(𝑧) that will lead to the Timoshenko 
beam mass minimization, where the fundamental frequency of oscillation 𝜔1 =
𝜔∗ is specified. In that regard, the functional that is minimized is of the form: 

 
0

( )
L

J z A z dz  ,                                                                                       (7) 

differential equations (6) represent the equations of state. 
 
Contour conditions at the ends can be written using differential equations of 
planar motion for each of the added rigid body in a way as described in more 
detail in [22]. Contour conditions at the left end are of the form:  
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whereas at the right end: 
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3. Determining the optimal profile shape of a beam by applying 

Pontryagin’s maximum principle 
 
The optimal control problem (6-9) will be solved by applying Pontryagin’s 

maximum principle [26]. To this end, let us write Pontryagin’s function: 

 
 

 
 

 

 

 
   

       

0

2
2

2 2 2

( ) ( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )( ( ) )

 

a

t f

a t
U W

f
F

F t

F z F z
H z A z z z z

E z A z k A z G z

M z
z z z A z U z

E z sA z

z z A z W z z F z z sA z

 

 

   





      


  

               

(10) 

where 0 , ( ), ( ), ( ), ( ), ( ), ( )
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where 
0 is an arbitrary non-positive constant. In problems of this type it is 

commonly taken that 0 1   . 

The transversality conditions [26] can be represented in the form as follows: 

0
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where     is an asynchronous variation. Based on initial and final conditions 

(8,9), the following variation dependencies are obtained at the left end: 
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and at the right end: 
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Substituting (13) and (14) in (12), the transversality conditions are obtained: 
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If the conjugate vector coordinates are expressed via state quantities using the 
scalar parameter p:  

, , , , , ,
f t aU a W t f M F FpF pF pM p pW pU                 (16)  

it can be noted that differential equations of the coupled system (11) are reduced 
to the governing system (6), and that the transversality conditions (15) are 
satisfied in the case when the conditions at the left end (8) and at the right end 
(9) are satisfied. This has been noted in the shape optimization problems 
reported by Atanacković et al. [4-8] and has significantly facilitated the 
application of Pontryagin’s maximum principle. It is very well known that 

numerical difficulties related to computations of the costate variables are those 
that are limiting the application of maximum principle. 
Optimal controls ( )A z  are defined from the maximum condition of 
Pontryagin’s function (10): 
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which, considering (16), is reduced to the conditions: 
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Based on (19), without loss of generality, it can be taken that 
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the expression for defining optimal control is reduced to the 4th degree 
polynomial with respect to ( ) :A z
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The procedure of numerical solving of the two-point boundary value problem 
(6-9,20) consists of the three-parameter shooting that involves selecting 
𝐹𝑎(0), 𝐹𝑡(0), 𝑀𝑓(0) (where 𝑈(0), 𝑊(0),  (0) can be calculated from (8)) to 
satisfy the relations (9).  If numerical solving is performed in the program 
package WolframMathematica [27] using function NDSolve[…], it is not 

necessary to express A(z) from (20) in analytical form via state quantity, 
because this function contains in itself the procedure for numerical solving of 
the system of differential and ordinary equations.   

In the case of restrictions imposed on the cross-sectional area: 
                         min max( )A A z A                                                                 (21) 
it is necessary to check whether the values obtained from (20) satisfy the 
restrictions (21). If they are lower or higher compared to the permissible limit 
values, the cross-sectional areas are constant over those intervals, amounting to 

maxA or minA . As a rule, when solving such problems, the optimal shape is first 
determined without considering the restrictions (21). Thereafter, it is attempted 
to find a control that satisfies all conditions of the Maximum principle of such 
structure that on the segments where an area larger than maxA is obtained by 
solving (20), it is taken that in that segment a constant cross-section is of 
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maximum permissible area. Similarly, in the case when the area is smaller, but 
it is then taken minA . 

Positions iz  where a variable cross-section joins a constant cross-section of the 
maximum area are determined from the conditions: 
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however, in the case of merging with a segment of the constant cross-section of 
the minimum area: 
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4. Numerical example 
 
The shape optimization procedure will be presented using the example of a 
cantilever beam of a square cross-section, length L=1m, with a rigid body 
placed eccentrically at the free end, as shown in Fig. 2. The rigid body has mass 

10rM kg and moment of inertia 22.5CrJ kg m . Axial and transverse 

eccentricities of the rigid body amount to 0.5r re e h h m    . In AFG 

material considered herein the laws of change in density and modulus of 
elasticity are taken as in [24,25]: 

0 0 3

11
0 0 2

( ) (1 0.8cos( )), 7850 ,

( ) (1 0.2cos( )), 2.068 10 .

kg
z z

m
N

E z E z E
m

  

   

   



                                              (24) 

 
Fig. 2 [25] Cantilever beam of a variable square cross-section 

 
For Timoshenko beams of a square cross-section, = 1/12 . The Timoshenko 

coefficient, in this case, amounts approximately to 𝑘 =
5

6
. The shear modulus is 
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defined using the Poisson coefficient 𝜈 from the expression 𝐺(𝑧) =
𝐸(𝑧)

2(1+𝜈)
, 

where for its value it is taken here that 𝜈 = 0.3. 
Also, let the required value of the fundamental frequency be 𝑓 = 10 𝐻𝑧 which 
leads to the fundamental circular frequency 𝜔∗ = 20𝜋 𝐻𝑧. 
Let us seek a solution of the optimization problem first for the case when there 
are not restrictions to the cross-sectional area. When performing a three-
parameter shooting in the program package WolframMathematica [27], three 
missing values of the three parameters at the left end are obtained: 

(0) 219.631 , (0) 451.863 , (0) 848.826 ,a t fF N F N M Nm            (25) 

It should be noted here that from the contour conditions (8), when stiffnesses 
are of infinitely large values (in the case of a clamped left end), zero values of 
corresponding displacements U(0), W(0), φ(0) formally follow too. 
Fig. 3 shows values of the optimum cross-sectional area shape and its 
corresponding sides of a square (red line). The dashed line denotes values 

corresponding to a constant cross-sectional area *A and the side of a square *a , 

respectively * 2 *0.00207910 , 0.0455971A m a m   for which the 
fundamental circular frequency is 𝜔∗ = 20𝜋 𝐻𝑧 , and which were obtained in 
paper [24]. 

 

 
Fig. 3 Optimum cross-sectional side of a square a(z) 

 
Relative material saving compared to the cantilever beam of a constant cross-
section corresponding to the same circular frequency amounts to:   
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where numerical integration was done in (26).  
Consider the case when the cross-sectional area is limited so that amax=0.06m, 
amin=0.035m. Therefore, it can be assumed that at the initial segment the beam 
is of the maximum possible area and at the end segment it is of the minimum 
area. 
Besides unknow quantities Fa(0), Ft(0), Mf(0), it is also necessary to determine 
positions z1,2 of coupling occurrence between maximum of minimum corss-
section varying in area. 
These five parameters are chosen so that after numerical integration of the 
system (6) final conditions (9) as well as conditions (22,23) are satisfied at the 
coupling points. The values obtained as solutions are  
 
                                                                                                                          (27) 
 
and optimal shape is shown in Fig. 3 (blue line). In this case, the relative 
percent saving of the mass (26) is slightly lower and amounts to 22.97%. 
 
 

5. Conclusions 
 
This paper demonstrates the performance of shape optimization of AFG 
Timoshenko beam of a square cross-section with coupled axial and bending 
vibrations, where the beam mass minimization is done at specified fundamental 
frequency. In solving this optimization problem Pontryagin's maximum 
principle is applied. So far, Pontryagin’s maximum principle has been 

practically used for solving optimization problems in buckling so that in this 
paper its application is extended to optimization problems in oscillating body. 
The above procedure can be also applied to the general case of a cross-section 
such as circular, etc. The above procedure can be also applied to the general 
case of contour conditions at the beam ends, including bodies eccentrically 
positioned at both ends, different types of supports at beam ends, as well as 
clamping of the bodies with different springs. By taking infinitely large 
stiffnesses of appropriate springs, the model considered can be also extended to 
the cases when the corresponding displacements in the supports equal zero.  
 
 
  

1 2

(0) 208.038 , (0) 446.939 , (0) 826.645

0.10013 , 0.77526

a t fF N F N M Nm

z m z m
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