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Free in-plane vibration analysis of circular arches with varying cross-sections is studied by means of the symbolic-

numeric method of initial parameters. The effects of axial extension, transverse shear deformation and rotatory inertia are 

considered. For various boundary conditions, natural frequencies of free in-plane vibration of circular arches with varying 

cross-sections are obtained. By comparing obtained results with previous ones available in the literature the effectiveness 

of application of the symbolic-numeric method of initial parameters to the problem considered is proven. 
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1. INTRODUCTION 

The circular arches represent important components 

of engineering structures. The vibration analysis of 

circular arches is one of important aspect of dynamic 

analysis of these structural components. The review of 

papers on this topic can be found in [1-4]. In the literature, 

the three principal dynamical models of circular arches 

were considered: the model with included the effects of 

axial extensibility, shear deformation and rotary inertia [5-

11] (the so-called Timoshenko circular arches); the model 

with neglected the effects of both shear deformation and 

rotary inertia [12-15]; the model without the effects of 

axial extensibility, shear deformation and rotary inertia 

[16,17] (the so-called Euler-Bernoulli circular arches). The 

exact solution of the vibration problem of uniform 

Timoshenko circular arches was given in [6] and for 

stepped ones in [7]. Based on these solutions the 

approximate approach for vibration analysis of tapered 

Timoshenko circular arches was presented in [9]. Note that 

the similar idea is used in the approach for vibration 

analysis of tapered Euler-Bernoulli circular arches was 

given in [16]. The papers [10, 19-23] are interesting in that 

they consider the influence of functionally graded material 

on the vibration characteristics of circular arches.  

The aim of this paper is to evaluate a method for 

the vibration analysis of tapered circular Timoshenko 

arches. The method is based on the use of the symbolic-

numeric method of initial parameters [24]. To the authors’ 
best knowledge of the literature, the method presented was 

not considered so far in scientific papers. 

 

2. FORMULATION OF GOVERNING EQUATIONS 

Figure 1 shows a thin elastic circular arch with 

varying cross-section in its undeformed configuration. 

Without loss of generality, it is assumed that the arch has a 

rectangular cross-section of constant width b  and variable 

height h   which is a function of the angular coordinate ș . 

 

 
 

Figure 1: The geometry of a circular arch with varying 

cross-section 

 

 By the angle ș  a point on the arch centroidal  

curve is defined. Also, the following quantities are shown 

in Figure 1: 
te , 

ne , and 
be  are the unite vectors of tangent, 

principal normal, and binormal of the arch centroidal 

curve, respectively; R  is the radius of the undeformed 

centroidal  curve of the arch; Tș  is the opening angle of 

the arch, w  represents the radial displacement of a point 

of the centroidal curve in the 
ne  direction; u  represents 

the tangential displacement of a point of the centroidal 

curve in the 
te  direction; ȥ  is the angle of rotation of the 

arch cross-section due to bending. The circular arch is 

made of a homogeneous material of the modulus of 

elasticity E , the mass density ρ , and the shear modulus 

G . It is taken that 0ș   at the arch left end. 

The corresponding governing differential equations 

of the free in-plane vibrations of the circular arch 

considered read [9]: 
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( )

dU R
W N

dș EA ș
  , (1) 

Ψ
( )

dW R
U Q R

dș GA ș k
     , (2) 

Ψ
( )

b

b

d R
M

dș EI ș
  , (3) 

2 ( )Ψb

b

dM
RQ RρȦ I ș

dș
   , (4) 

2( )
dN

Q RρA ș Ȧ U
dș

  , (5) 

2( )
dQ

N RρA ș Ȧ W
dș

   . (6) 

where W  and U  are the mode shape functions 

corresponding to the radial and tangential displacements, 

w and u , respectively, N , Q , and
bM are the mode 

shape functions of axial forces, shear forces, and bending 

moments at an arch cross-section, respectively, k  is the 

shear correction factor, and Ȧ  is the natural angular 

frequency of free in-plane vibration of the circular arch. In 

this paper, it is taken 5 / 6k   for the rectangular cross-

sections. The other expressions for the coefficient k  may 

be found in [25]. 

For the purpose of further exposition, let us 

introduce the following dimensionless quantities: 

, , ,
T

ș U Wȟ U W
ș R R

   (7) 

2

( )( )
, ( ) , ( ) ,br b

b

r brr

I I șA ș
r A ȟ I ȟ

A IA R
   (8) 

22(1 )
, , ,

r br

E Ȟ N QRȝ N Q
Gk k EA EI


    (9) 

1
, ,b

b

br T

M R d d
M

EI dș ș dȟ
  (10) 

where Ȟ  is the Poisson's ratio and 
rA and

brI are the 

cross-sectional area and the cross-sectional area moment 

of inertia about axis
be , respectively, at a reference cross-

section.  

Using (7)-(10) the equation system (1)-(6) can be written 

in the following dimensionless form: 

,
( )

T

T

șdU ș W N
dȟ A ȟ

  (11) 

Ψ,
( )

T

T T

ș rȝdW
Uș Q ș

dȟ A ȟ
    (12) 

Ψ
,

( )

T
b

b

șd
M

dȟ I ȟ
 (13) 

2

( ) Ψ,b
bT T

d M ș Q rș I ȟ Ȧ
dȟ

   (14) 

2

( ) ,T T

d N
rș Q rș A ȟ Ȧ U

dȟ
  (15) 

2

( ) ,T

T

șdQ
N ș A ȟ Ȧ W

dȟ r
   (16) 

where 
4

r

br

R ρAȦ Ȧ
EI

 (17) 

is the  dimensionless natural frequency. This differential 

equation system can be shown in the matrix form as 

follows: 

( )
( )

d ȟ ȟ
dȟ


X

BX (18) 

where 

( ) ( ), ( ), Ψ( ), ( ), ( ), ( )
T

bȟ U ȟ W ȟ ȟ N ȟ Q ȟ M ȟ   X (19) 
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2

2
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


 

B

0 0/ ( )

0/ ( )0

0 0 / ( )

0 0
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00

T

T

bT

T

T

T

ș A ȟ
ș rȝ A ȟ

ș I ȟ
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





 
 

. (20) 

The corresponding boundary conditions are: 

 clamped left arch end

(0) 0, (0) 0, Ψ(0) 0,U W   (21) 

 hinged left arch end

(0) 0, (0) 0, (0) 0,bU W M   (22) 

 clamped right arch end

(1) 0, (1) 0, Ψ(1) 0,U W   (23) 

 hinged right arch end

(1) 0, (1) 0, (1) 0,bU W M   (24) 

 free right arch end

(1) 0, (1) 0, (1) 0.bN Q M   (25) 

The differential equation system (18) and the relations 

(21)-(25) form a two-point boundary value problem of the 

free in-plane vibration of the circular arch with varying 

cross-section. The equations system (11)-(16) covers some 

special cases. Namely if the assumption of inextensibility 

of the arch centroidal line is used then the equation (11) 

should be replaced with: 

D.28



Proceedings of X International Conference “Heavy Machinery-HM 2021”, Vrnjačka Banja, 23– 25 June 2021 

Contribution to the problem of in-plane vibration of circular arches with varying cross-sections 
 

 T

dU ș W
dȟ

  . (26) 

Also, if rotatory inertia effect is ignored then the equation 

(14) should be replaced with: 

 
b

T

d M ș Q
dȟ

   . (27) 

Finally, if transverse shear effect is not considered then  

the equation (12) should be replaced with: 

 ΨT T

dW
Uș ș

dȟ
    . (28) 

3. SOLUTION PROCEDURE  

In this paper the two-point boundary value problem 

formulated will be solved by using the symbolic-numeric 

method of initial parameters [24]. Since (18) represents a 

linear system of differential equations then its solution can 

be represented as: 

 

 1 2 31 2 3( ) ( , ) ( , ) ( , )ȟ C ȟ Ȧ C ȟ Ȧ C ȟ Ȧ  X X X X   (29) 

 

where 
1C ,

2C , and 
3C  are the integration constants and 

 

 1 1 1 11( , ) ( , ), ( , ), Ψ ( , ), ( , ),ȟ Ȧ U ȟ Ȧ W ȟ Ȧ ȟ Ȧ N ȟ Ȧ X   

 11
( , ), ( , )

T

bQ ȟ Ȧ M ȟ Ȧ   , (30) 

 

 2 2 2 22( , ) ( , ), ( , ), Ψ ( , ), ( , ),ȟ Ȧ U ȟ Ȧ W ȟ Ȧ ȟ Ȧ N ȟ Ȧ X   

 22
( , ), ( , )

T

bQ ȟ Ȧ M ȟ Ȧ   , (31) 

and 

 

 3 3 3 33( , ) ( , ), ( , ), Ψ ( , ), ( , ),ȟ Ȧ U ȟ Ȧ W ȟ Ȧ ȟ Ȧ N ȟ Ȧ X   

 33
( , ), ( , )

T

bQ ȟ Ȧ M ȟ Ȧ    (32) 

are the particular solutions obtained by integrating the 

differential equations system (18) using the built-in 

function ParametricNDSolve[] in Mathematica 

programming package with the following initial 

conditions, respectively: 

 

 
(0) 0, (0) 0, Ψ(0) 0,

(0) 1, (0) 0, (0) 0b

U W

N Q M

  

  
 , (33) 

 

 
(0) 0, (0) 0, Ψ(0) 0,

(0) 0, (0) 1, (0) 0b

U W

N Q M

  

  
 , (34) 

and 

 
(0) 0, (0) 0, Ψ(0) 0,

(0) 0, (0) 0, (0) 1b

U W

N Q M

  

  
 , (35) 

 

for the clamped left arch end, whereas for the hinged left 

arch end the following corresponding initial conditions are 

used: 

 
(0) 0, (0) 0, Ψ(0) 1,

(0) 0, (0) 0, (0) 0b

U W

N Q M

  

  
 , (36) 

 

 
(0) 0, (0) 0, Ψ(0) 0,

(0) 1, (0) 0, (0) 0b

U W

N Q M

  

  
 , (37) 

and 

 
(0) 0, (0) 0, Ψ(0) 0,

(0) 0, (0) 1, (0) 0b

U W

N Q M

  

  
 . (38) 

 

From the condition that the solution (29) satisfies the 

boundary conditions (23)-(25) it follows that for clamped 

arch right end one has: 

   

 

1 2 31 2 3

1 2 31 2 3

1 1 2 2 3 3

(1, ) (1, ) (1, ) 0,

(1, ) (1, ) (1, ) 0,

Ψ (1, ) Ψ (1, ) Ψ (1, ) 0

C U Ȧ C U Ȧ C U Ȧ

C W Ȧ C W Ȧ C W Ȧ

C Ȧ C Ȧ C Ȧ

  

  

  

  (39) 

 

whereas for hinged right arch end one has: 

 

 

1 2 31 2 3

1 2 31 2 3

1 2 31 2 3

(1, ) (1, ) (1, ) 0,

(1, ) (1, ) (1, ) 0,

(1, ) (1, ) (1, ) 0b b b

C U Ȧ C U Ȧ C U Ȧ

C W Ȧ C W Ȧ C W Ȧ

C M Ȧ C M Ȧ C M Ȧ

  

  

  

 (40) 

 

and finally for the free arch right end it holds that: 

 

 

1 2 31 2 3

1 2 31 2 3

1 2 31 2 3

(1, ) (1, ) (1, ) 0,

(1, ) (1, ) (1, ) 0,

(1, ) (1, ) (1, ) 0b b b

C N Ȧ C N Ȧ C N Ȧ

C Q Ȧ C Q Ȧ C Q Ȧ

C M Ȧ C M Ȧ C M Ȧ

  

  

  

  (41) 

 

The equations systems (39)-(41) represent homogeneous 

systems of equations in unknowns 
1C , 

2C , and 
3C . In 

order that these systems can have non-trivial solutions for 

1C , 
2C , and 

3C , the determinants of their corresponding 

coefficients matrix must be equal to zero, that is: 

 

 

1 2 3

1 2 3

1 2 3

(1, ) (1, ) (1, )

( ) det (1, ) (1, ) (1, ) 0

Ψ (1, ) Ψ (1, ) Ψ (1, )
C

U Ȧ U Ȧ U Ȧ

f Ȧ W Ȧ W Ȧ W Ȧ

Ȧ Ȧ Ȧ

 
 

  
 
  

 , (42) 

 

 

1 2 3

1 2 3

1 2 3

(1, ) (1, ) (1, )

( ) det (1, ) (1, ) (1, ) 0,

(1, ) (1, ) (1, )

H

b b b

U Ȧ U Ȧ U Ȧ

f Ȧ W Ȧ W Ȧ W Ȧ

M Ȧ M Ȧ M Ȧ

 
 

  
 
  

 

  (43) 

 

 

1 2 3

1 2 3

1 2 3

(1, ) (1, ) (1, )

( ) det (1, ) (1, ) (1, ) 0

(1, ) (1, ) (1, )

F

b b b

N Ȧ N Ȧ N Ȧ

f Ȧ Q Ȧ Q Ȧ Q Ȧ

M Ȧ M Ȧ M Ȧ

 
 

  
 
  

. 

  (44) 
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The relations (42)-(44) represent the corresponding form 

of frequency equations for, respectively, clamped, hinged 

and free right arch ends. For easier evaluation of roots of 

the equations (42), (43), and (44), the graphs of the 

functions ( )Cf Ȧ , ( )Hf Ȧ , and ( )Ff Ȧ obtained by using 

the built-in function Plot[] in Mathematica programming 

package may be used. The values of the natural 

frequencies can be obtained by means of the Mathematica 

built-in function FindRoot[]. 

4. NUMERICAL EXAMPLES

4.1. Uniform Euler-Bernoulli circular arches 

In this section, the accuracy of the proposed 

approach in the case of the effects of axial extension, 

transverse shear deformation and rotatory inertia ignored 

is examined. For both clamped-clamped and hinged-

hinged boundary conditions values of the dimensionless 

frequency coefficient 2

Tc ș Ȧ  are calculated for various 

values of the opening angle 
Tș . These values are shown in 

Tables 1 and 2. 

Table 1: The lowest five dimensionless frequency 

coefficients 2 ( 1,...,5)ii Tc ș Ȧ i   of clamped-clamped 

uniform Euler-Bernoulli circular arches for 1/ 2500r 
and various values of the opening angle 

Tș

Tș [rad] Mode [6] This study 

π/2 1 55.82523 55.82521 

2 106.7301 106.7304 

3 193.0345 193.0354 

4 284.8229 284.8374 

2π/3 1 51.96935 51.96931 

2 103.5760 103.5765 

3 188.3591 188.3597 

4 281.2906 281.2913 

π 1 43.27259 43.27257 

2 95.26028 95.26036 

3 176.8800 176.8810 

4 271.6560 271.6495 

Table 2: The lowest five dimensionless frequency 

coefficients 2 ( 1,...,5)ii Tc ș Ȧ i  of hinged-hinged 

uniform Euler-Bernoulli circular arches for 

1/ 2500r  and  various values of the opening angle Tș

Tș  [rad] 
Mode [6] This study 

π/2 1 33.96053 33.96054 

2 79.95263 79.95272 

3 152.1706 152.1712 

4 237.9724 237.9718 

2π/3 1 30.38416 30.38415 

2 76.74733 76.74741 

3 148.1494 148.1496 

4 234.5716 234.5713 

π 1 22.37183 22.37184 

2 68.33021 68.33020 

3 137.9534 137.9541 

4 225.2190 225.2200 

4.2. Uniform Timoshenko circular arches 

In this section, the accuracy of the proposed 

approach in the case when the effects of axial extension, 

transverse shear deformation and rotatory inertia are taken 

into account. For both clamped-clamped and hinged-

hinged boundary conditions values of the frequency 

coefficient 2

Tc ș Ȧ are calculated for 1/ 2500r   and 

various values of the opening angle 
Tș . These values are 

shown in Tables 3 and 4. 

Table 3: The lowest five dimensionless frequency 

coefficients 2 ( 1,...,5)ii Tc ș Ȧ i   of clamped-clamped 

uniform Timoshenko circular arches for 1/ 2500r   and 

various values of the opening angle 
Tș

Tș [rad] Mode [6] This study 

π/2 1 53.96596 53.96698 

2 86.19077 86.19724 

3 132.7272 132.7371 

4 175.8392 175.8474 

5 265.8141 265.8130 

2π/3 1 50.93224 50.93284 

2 96.85173 96.85474 

3 178.1998 178.2048 

4 198.0489 198.0699 

5 282.9555 282.9633 

π 1 42.86968 42.86991 

2 93.26808 93.26909 

3 172.2951 172.2978 

4 258.4766 258.4856 

5 372.7893 372.5899 

Table 4: The lowest five dimensionless frequency 

coefficients 2 ( 1,...,5)ii Tc ș Ȧ i  of hinged-hinged uniform 

Timoshenko circular arches for 1/ 2500r   and various 

values of the opening angle Tș

Tș [rad] Mode [6] This study 

π/2 1 33.46323 33.46350 

2 74.34122 74.34354 

3 121.4958 121.5088 

4 144.0231 144.0274 

5 226.3381 226.3465 

2π/3 1 30.12124 30.12138 

2 74.69487 74.69574 

3 143.4124 143.4163 

4 197.2652 197.2830 

5 242.4045 242.4115 

π 1 22.28359 22.28363 

2 67.67219 67.67259 

3 135.8837 135.8850 

4 219.2887 219.2796 

5 323.9065 323.8902 
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4.3. Timoshenko circular arches with varying cross-

sections 

 

In this section, the accuracy of our approach in the 

case of Timoshenko circular arches with varying cross-

sections is analysed. Both unsymetric arches with  varying 

cross-section height defined as: 

 

 ( ) (1 2 / ), 0c T Th ș h Ș Șș ș ș ș       (45) 

and symmetric arches with  varying cross-section height 

prescribed as: 

 
(1 2 / ), 0 / 2

( )
(1 2 / ), / 2

c T T

c T T T

h Ș Șș ș ș ș
h ș

h Ș Șș ș ș ș ș
   

     
  (46) 

are considered where 
ch  represents the cross-section 

height at the arch crown and Ș  is the taper ratio. Note that 

here, the cross-section width b  is constant. Also, the 

reference cross-section is plased at the arch crown which 

means that: 

 

 
r cA bh , (47) 

 
3

12

c

br

bh
I  . (48) 

For both clamped-clamped and hinged-hinged 

boundary conditions, the corresponding values of 

dimensionless natural frequencies ( 1,...,4)iȦ i   are 

calculated for 1/ 2500r  , 0.1Ș  , and various values of 

the opening angle 
Tș . These values are shown in Tables 5 

and 6. 

 

Table 5: The lowest four dimensionless natural 

frequencies  of tapered clamped-clamped 

Timoshenko symmetric circular arches for 1/ 2500r  , 

0.1Ș  , and various values of the opening angle 
Tș   

Tș  [rad] Mode [9] This study 

π/18 1 433.46730 433.46807 

 2 848.3639 848.3653 

π/9 1 161.500908 161.502319 

 2 346.5162 346.5176 

π/6 1 88.1269568 88.1275550 

 2 185.2505 185.2518 

2π/9 1 61.7200715 61.7203672 

 2 113.0604 113.0616 

5π/18 1 50.8647280 50.8648687 

 2 75.13195 75.13295 

 

 

Table 6: The lowest four dimensionless natural 

frequencies ( 1,...,4)iȦ i   of tapered hinged-hinged 

Timoshenko unsymmetric circular arches for 1/ 2500r  , 

0.1Ș  , and various values of the opening angle 
Tș   

Tș  [rad] Mode [9] This study 

2π/9 1 48.6310055 48.6310041 

 2 - 73.5871226 

 3 - 159.537886 

 4 - 227.199368 

5π/18 1 45.66166116 45.6616819 

 2 - 47.5315845 

 3 - 106.612136 

 4 - 172.488529 

π/3 1 32.51755826 32.5176282 

 2 - 44.1841916 

 3 - 76.7889457 

 4 - 125.924402 

4π/9 1 17.59579627 17.5958086 

 2 - 36.3558497 

 3 - 52.0315664 

 4 - 73.3148923 

 

 

5. CONCLUSIONS 

In this paper the symbolic-numeric method of 

initial parameters developed in [24] has been applied to 

the problem of in-plane vibration of circular arches with 

varying cross-sections. Through the numerical examples 

shown in Section 4 the effectiveness of application of the 

symbolic-numeric method of initial parameters to the 

vibration problems considered has been proved. The 

proposed approach allows also the vibration analysis in the 

case when the effects of axial extension, transverse shear 

deformation and rotatory inertia are ignored as well as in 

the case when the effects of transverse shear deformation 

and rotatory inertia are not included in the arch model. It is 

the goal of future work to expand the symbolic-numeric 

method of initial parameters to vibration analysis of 

circular arches made of functionally graded materials [10, 

18-23], noncircular curved beams [3] (such as parabolic, 

sinusoidal, and elliptical arches) as well as arches carrying 

concentrated masses [26,27].  
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