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This paper presents the authors’ efforts to conceptual design of control 
system that can learn from its own experience. The ability of adaptive 
behaviour regarding the given task in real, unpredictable conditions is one 
of the main demands for every intelligent robotic system. To solve this 
problem, the authors suggest a learning approach that combines empirical 
control strategy, reinforcement learning and axiomatic design theory. The 
proposed concept uses best features of mentioned theoretical approaches 
to produce optimal action in the current state of the mobile robot. In this 
paper empirical control theory imparts the basis of conceptual solution for 
the navigation problem of mobile robot. Reinforcement learning enables 
the mechanisms that memorize and update environment responses, and 
combining with the empirical control theory determines best possible 
action according to the present circumstances. Axiomatic design theory 
accurately defines the problem and possible solution for the given task in 
terms of the elements defined by two previously mentioned approaches. 
Part of the proposed algorithm was implemented on the LEGO 
Mindstorms NXT mobile robot for the navigation task in an unknown 
manufacturing environment. Experimental results have shown good 
perspective for development of efficient and adaptable control system, 
which could lead to autonomous mobile robot behaviour. 
 
Keywords: learning mobile robot, empirical control theory, reinforcement 
learning, axiomatic design theory, mobile robot navigation. 

 
 

1. INTRODUCTION 
 

One of the key objectives in modern robotics is to 
produce such a behaviour that is adaptive in real, 
stochastic conditions. In order to have productive, safe, 
and robust working robots, we need them to be able to 
cope with the dynamic nature of real environments: like 
humans or animals, robot should be able to adapt and 
learn from their own experiences instead of relying on 
predefined rules, models, or hardware controllers [1]. 
The same robot, running the same control program, can 
act differently considering real conditions in moment of 
a robot state transition. Hence, the reliability of such 
system cannot be satisfactory in terms of producing the 
best possible behaviour in a given moment. It is clear 
that adaptability is one of the main characteristics robot 
should possess. 

The presented approach to conceptual design of 
control system inevitably leads to involving algorithm 
that includes active learning parameters. Those variables 
must store the environmental response of performed 
robot action, and also must indicate to control system 

what is the best possible action in the current robot state, 
with aspect to the real conditions and specified task. In 
that sense, several approaches can be distinguished: 
evolutionary computation, reinforcement learning (RL), 
empirical control (EC) theory [2], and others. These 
methods are well known and well established in various 
solutions for robot motion control problems. 

Also, one of the main missions comprising mobile 
robot navigation task is properly and accurately defining 
a problem and a solution. From that point of view, it is 
necessary to design functional requirements and design 
parameters as elements of axiomatic design theory (AD) 
developed by Professor Suh of MIT [3]. Design, in 
Suh’s terms, consists of a continuous interaction 
between the functional and the physical spaces. In that 
context, word functional may refer to the ability of a 
mobile robot learning based on the empirical data 
gathered from external sensors, i.e. main requirement in 
mobile robot navigation problem. The term physical 
may refer to the proposed empirical control algorithm, 
which is the main design parameter. One of the paper’s 
aims is to present axiomatic design theory as a 
systematic tool for structure development of the mobile 
robot control system related to the navigation problem, 
and also a proper solution to that problem. 

This paper sets up an original empirical control 
system based on the elements of reinforcement learning, 
particularly designed for solving the task of mobile robot 
navigation in unknown manufacturing environment. 
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Obtained results show good starting point for developing 
an autonomous behaviour of a mobile robot. 

 
2. LEARNING METHODS 

 
In this section will be explained basic concepts that are 
used in proposed empirical control system design. 
Empirical control theory and reinforcement learning 
theory will be clarified, with application to the proposed 
algorithm. Similarity and dissimilarity between these 
two approaches will also be pointed out. 

 
2.1 Empirical control theory 

 
Foundations of EC theory were first established by R.A. 
Brown [2]. Inspiration for this approach Brown got from 
observing real time natural systems and their interaction 
with the environment. He perceived that natural system or 
individual that behaves successfully appears to 
understand the requirements and information natural 
environment, which is direct consequence of the presence 
of natural intelligence. Much of the ability of natural 
systems comes about through practice and experience. 
The true value of obtained experience is demonstrated by 
comparing the systems’ first attempt to execute a given 
task with a performance of the system after a large 
number of iterations. Such empirical systems have 
objectives which can be met by a system are designed to 
carry out just three steps presented in Table 1 [2,4,5]. 
Table 1. Three steps used by a self-learning system 

No. Description 

1. Produce certain behavior under certain conditions.  
2. Measure whether that behavior is carried out. 

3. Produce the behavior that has the highest probability of 
being carried out succesfully under those conditions. 

 
On the basis of these three steps the empirical 

control algorithm for industrial robot learning has been 
developed [4,5]. Four simple steps defined in this 
algorithm [4,5] create the growth, evolution, i.e. 
successful development of this robot, which combined 
with artificial neural networks [6] represents 
successfully developed empirical control system. 

Also, EC theory served as inspiration for designing a 
new hybrid control architecture for intelligent mobile 
robot navigation in a manufacturing environment [7]. 
So, from these examples one can realize the enormous 
potential that lies in described settings for control 
system design. 

 
2.2 Introduction to reinforcement learning 

 
In a RL paradigm [8], an agent interacts with the 
environment through a set of actions. The environment 
is modified in the sense of agent perception through 
external sensor and state in the next time step according 
to the selected action. Furthermore, at each step the 
agent receives an external award, as shown in Figure 1. 

The objective of the RL agent is to maximize a 
numerical reward signal [9,10]. The main advantage of 
RL is that it does not need the model of the 

environment, i.e. the path planning algorithm for mobile 
robot navigation is not necessary. 

 
Figure 1. Basic model of a RL agent 

Watkins introduced in 1989 the method of 
reinforcement learning called Q-learning. [11]. Q-
learning algorithm attempts to learn a state-action value 
Q (s,a), whose value is the maximum discounted reward 
that can be achieved by starting in state x, taking an 
action a, and following the optimal policy thereafter 
[12]. The action space is discrete and a separate Q (s,a) 
value exists for each state-action pair. 

In each time step the agent takes an action a from 
the state s, and the current state-action pair value 
estimate from a and s donated by Qt (s,a) is updated as 
follows [12]: 

 ( ) ( )1 , ,t tQ s a Q s a+ ← +   

 ( ) ( )1 1max , ,t t t t t
a

r Q s a Q s aα γ+ +
⎡ ⎤+ + −⎢ ⎥⎣ ⎦

 (1) 

where: t + 1 denotes the time constant in the next robot 
state; γ is the discount factor with value between 0 and 
1; rt + 1 is payoff that agent receives when action a is 
taken in state s; and parameter α is a learning rate. 

Recommended values for scalars γ and α are ≥ 0.9 
and ≤ 0.2, respectively.  

Pseudo code for Q-learning algorithm is given in 
Table 2. 
Table 2. Pseudo code of Q-learning algorithm 

Initialize state-action function Q (s,a) 
Present current state St 

Calculate optimal action 
Execute selected action (ε-greedy) at 

Observe new state and reinforcement signal, St + 1 and rt + 1, 
respectively 

Update state-action function as 
( ) ( )

( ) ( )

1

1 1

              , ,

max , ,

t t

t t t t t
a

Q s a Q s a

r Q s a Q s aα γ

+

+ +

← +

⎡ ⎤+ + −⎢ ⎥⎣ ⎦  
New state becomes current state 

 
2.3 Similarity and diversity of presented learning 

methods 
 

Although the presented methods have a lot in common, 
the main difference between them reflects onto the 
approach of learning state-action value function. While 
reinforcement learning modifies Qt (s,a) (in each 
iteration), the empirical theory tends to guide the agent 

Reward 

 

Intelligent agent - mobile 
robot 

 

Environment 
Action State
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to remember all of the previous transition states and 
applied actions. In that way, for the same sensory 
readings, the agent will select successful action 
according to the previously same obtained 
environment response. This should largely reduce the 
number of implied iterations of robot state-action 
transitions. At the same time, Q-learning represents 
great model for storing state transition probabilities, 
which can be employed in the novel control design 
approach. Thus, the authors propose the hybrid control 
system that contains the best features of both described 
methods. 

 
3. PROBLEM STATEMENT 

 
Described control system design methods will be 
partially implemented for the problem of the mobile 
robot navigation in unknown environment. The 
presented algorithm also includes a solution to an 
obstacle avoidance problem [13,14], although it has not 
yet been implemented mainly because of the large 
number of iterations needed. Iterations necessary for 
successful intelligent behaviour overcome tens of 
thousands, because the tabula rasa mobile robot [10] is 
not capable of faster learning. As mentioned, mobile 
robot should visit every possible state and produce 
every possible action in that state to have complete 
knowledge of optimal navigation path. 

For this study the starting and goal point was chosen 
randomly. The robot was acting according to the 
defined actions choosing them randomly too. The values 
for Q (s,a) were updated in accordance with the 
described Q-learning algorithm. Memorized sensor 
readings were stored in a matrix, and for each set of 
gathered empirical data Q (s,a) value was assigned. 
Then, after a certain number of iterations, the two 
Q (s,a) values were compared, and the one with higher 
probability was chosen. Obtained data was processed in 
the MATLAB software package [15], and then 
graphically presented as shown in the section below. 

 
4. MAIN CONCEPT OF AXIOMATIC DESIGN 

 
For the purpose of proper design and development of 
solution to the given task, the Axiomatic Design theory 
(AD) developed by Suh was adopted [3]. The described 
theory presents rigorous rules within solutions design 
for any given engineering problem. In this case, the 
main problem can be described as adaptive learning 
problem during navigation task performed by a mobile 
robot. That problem can be divided into two sub 
problems, that is, a problem of learning during specific 
task and a problem of using that learned experience to 
improve the existing behaviour. 

According to [16,17] the design process in 
axiomatic design theory consists of five steps stated in 
the Table 3. 

The design axioms present the basis for the concept 
of AD. The first axiom is known as the Independence 
Axiom, and the second one is known as the Information 
Axiom. Their description is given in the Table 4 [3]. 

As stated earlier, the engineering axiomatic design 
refers to mapping between functional and physical 
 

Table 3. Several steps of design process defined by AD 
theory 

Step 
No. Description 

1. Establishment of designed goals to satisfy a given 
set of percieved needs. 

2. Conceptualization of designed solutions. 
3. Analysis of the proposed solution. 

4. Selection of the best design from among those 
proposed. 

5. Implementation. 
 

Table 4. Axioms of AD and their short description 

Axiom 
No. Name and description 

1. 
The Indipendence Axiom. 

Maintain the independence of functional 
requirements. 

2. The Information Axiom. 
Minimizes the information concept. 

 
domain. These domains are defined with functional 
requirements (FR) and design parameters (DP), 
respectively [3,17,18]. In mathematical terms, the 
relationship between the FRs and DPs is expressed as: 

 { } { }FR  = A DP⋅ . (2) 

In given equation, {FR} denotes the functional 
requirement vector, {DP} denotes the design parameter 
vector, and |A| denotes the design matrix that 
characterizes the design process. The structure of the 
matrix |A|, defines the type of design being considered. 
In order to satisfy the first axiom of AD, matrix |A| 
should be uncoupled or coupled design. 

In uncoupled design, the |A| matrix is a diagonal 
matrix, whose shape indicates the independence of FR-
DP pairs. So, logically, this type of design is most 
preferred. Decoupled design has the triangular design 
matrix |A|. This indicates that FRs can be satisfied 
systematically from the first FR to the last one, by 
considering the first n DPs only. In the previous 
sentence n denotes total number of FRs. This type of 
design is most common in practice. If the design matrix 
has no specific shape, then those designs are called 
coupled designs. These designs are undesirable, and 
every system designer should try to avoid them. 

 
4.1 Axiomatic design theory applied on the given 

control problem 
 

The first stage in designing the solution for the stated 
problem is to define the main functional requirement, i.e. 
to define the functional requirements (FRs) of the system 
in the highest level of all FRs in the functional domain. 
In this step extreme care should be given to choosing the 
right functional requirement, since different FR can lead 
to completely different solutions. Since the main 
problem has been formulated, the functional requirement 
of top hierarchal level can be defined as follows: 

• FR: The ability of mobile robot to learn (using 
Q-learning algorithm) based on the obtained 
empirical data from the environment. 
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Appropriate DP can be formulated as the proposed 
method of empirical control system of a mobile robot. So, 
the design parameter of the highest level is formulated as: 

• DP: proposal of the empirical control system. 
In the next steps the zigzagging process is applied. 

First, the main FR is decomposed into two levels, so 
that each level consists of several lower levels FRs. The 
same principle is applied on the main DP. In that 
manner, every DPs in the lower level corresponds to 
defined FRs in the same level. Also, the analysis of 
appropriate design matrix is given. Decoupled and 
uncoupled design matrices have been obtained, so the 
given result confirms the proposed solution to the 
problem. All of the experimental results regarding FRs 
and DPs at the lower levels with the corresponding 
design matrices are presented in Table 5. 

As it is shown in the table, the decoupled designs are 
obtained in every case, except for the second FR in the 
third hierarchical level. In that case, the uncoupled 
design is obtained, which is the best possible outcome 
of the design process. The results show that the 
proposed control system developed for a given 
navigation task is based on good outlines, which give 
solid foundations for further research. 

 
5. EXPERIMENTAL SETUP AND DISCUSSION 

 
Every mentioned aspect of control system design is applied 
to get an operational system for a navigational problem 
task. The configuration selected for implementing the 
proposed algorithm is LEGO Mindstorms NXT 
configuration, as shown in Figures 2 and 3. 

 
Figure 2. LEGO Mindstorms NXT configuration of a mobile 
robot in the laboratory model of environment – front view 

As an external sensor for obtaining empirical data in 
the environment, the ultrasonic sensor available in the 
existing LEGO kit was selected. Its motor was placed 
above the configuration, so as to minimize size of the 
configuration and maximize robot’s performance. The 
sensor range is defined by its manufacturer [19], and in 
case of testing the idea proposed in this paper it showed 
 

Table 5. FRs and DPs at lower levels and their 
corresponding design matrix A 

Hierar
chical 
level

FRs 
(description) 

DPs 
(description) 

A 
(type of 
design) 

FR1 
Execution of the 

given task 

DP1 
Navigation task of 
mobile robot in a 

manufacturing 
environment 

FR2 
Ability for 

adaptive behaviour

DP2 
Collecting data 
from external 

sensors 
II 

FR3 
Memorizing 

successful actions 
and states, and 

also the level of 
confidence for all 
performed actions

DP3 
Application of Q-
learning algorithm 

X
X X
X X X

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
(decoupled 

design) 

FR11 
Defining possible 

actions 

DP11 
Set of three 

possible actions 
FR12 

Defining possible 
states 

DP12 
Four possible 

states 
FR13 

Odometry model 
of mobile robot 

navigation 

DP13 
Data from the 
incremental 

encoders (mobile 
robot wheels) 

X
X X
X X X

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
(decoupled 

design) 

FR21 
Obstacle 

avoidance 

DP21 
Correct reading 

and processing of 
data received from 

external sensors 
FR22 

Adaptability for 
various real time 

conditions 

DP22 
Comparison of 

real and calculated 
state response of a 

mobile robot 
FR23 

Partially adaptive 
behaviour to 

unexpected events 
in dynamic 

environment 

DP23 
Implementation of 

autonomous 
behaviour model 

into the future 
mobile robot 

decisions 

X
X

X

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
(uncoupled 

design) 

FR31 
Memorizing best 

action in the given 
moment 

DP31 
Reward endue 

depending of the 
selected action 

FR32 
Determine level of 
confidence of the 

selected action 

DP32 
State-action value 
function Q (s,a) 
estimation based 
on the Q-learning 

algorithm 

III 

FR33 
Increasing/decreas

ing level of 
reliability for 

executed action 

DP33 
Comparison of 
selected action 

from the Q-table 
with empirical 
control theory 

X
X X
X X X

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
(decoupled 

design) 
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Figure 3. LEGO Mindstorms NXT configuration of a mobile 
robot in the laboratory model of environment – top view 

satisfactory results. The ultrasonic sensor reads the 
distance in five measuring points, crossing the angle range 
of 180 degrees. Its initial position is on the left (position 0 
in the Figure 4) viewing from the direction in which the 
robot is moving. It is activated at every 45 degrees, which 
in total gives five measurements in one state-action 
iteration. As mentioned, those values are then saved and 
are given an appropriate value. When the whole angle 
range of 180 degrees is visited, the sensor moves back to 
its initial position. In that backward motion the sensor is 
not active, i.e. it perceives readings in just one direction 
(clockwise). The robot is controlled by MATLAB 
package [15], using RWTH-toolbox [20]. In the Figure 4, 
the robot and sensor measurement process with 
measurement positions are symbolically represented. 

 
Figure 4. Mobile robot and sensor measurements in a 
global coordinate system 

The set of possible actions is defined according to 
the Table 6. 
Table 6. Defined actions and short description 

Action 
No. Name of action and description 

1. 
Move forward. 

Strateline forward movement of mobile robot cca 1 
cm long. 

2. Move left. 
Mobile robot turns left at the angle of 45 degrees. 

3. Move right. 
Mobile robot turns right at the angle of 45 degrees.

The reward existing in the (1) is defined according 
to the measurement of an ultrasonic sensor. The 
numerical values for reward signals r are assigned as 
shown below: 

 

present goal

0, min min
1, min min
1, min min

2,

J U
J U

r
U J

x x

=⎧
⎪ <⎪= ⎨− <⎪
⎪ =⎩

 (3) 

where J denotes previous set of measurements, and U 
set of measurements in the current state. The variable 
xpresent represents current state in which the mobile robot 
is, and xgoal denotes final state of a mobile robot. 
Clearly, the algorithm rewards robot movement away 
from the obstacle and reaching the final goal too, and 
punishments movement that lead closer to the static 
boundary. Odometry model was assigned for defining 
position and orientation of a mobile robot in global 
coordinates. 

 

cos
2 2

sin
2 2

2

d l d l

d l d l

d l

s s s s
b

x
s s s s

x y
b

s s
b

θ

θ
θ

⎡∆ + ∆ ∆ − ∆ ⎤⎛ ⎞⋅ +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎡ ⎤ ⎢ ⎥∆ + ∆ ∆ −∆⎛ ⎞⎢ ⎥′ = + ⋅ +⎢ ⎥⎜ ⎟⎢ ⎥ ⎝ ⎠⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥∆ − ∆

⎢ ⎥
⎢ ⎥⎣ ⎦

. (4) 

In the (4) x′ denotes the next state vector of a mobile 
robot. Constant b marks the wheelbase length, and ∆sd 
and ∆sl denotes the incremental path lengths in a mobile 
robot transition from one state to another. Clearly, x, y, 
and θ marks the current position and orientation of a 
robot. 

For parameters α and γ constant values have been 
adapted accordingly to the best results obtained. In this 
case, these parameters have 0.1 and 0.99 values, 
respectively. 

The environment state space in this setup is 
discretized, so that the Q-table has reasonably a large 
size. In that sense, the biggest problem of this approach 
is designing the state and action space in the way that 
matrix Q (s,a) is not very computational expensive. 
Several solutions are proposed to reduce the Q (s,a) 
size, from which the artificial neural network (ANN) [6] 
approach gave overall best results [12]. 

Given all stated in mind, a modification of obstacle 
avoidance Q-learning algorithm [21] is given. The 
improvement of this algorithm is reflected onto the 
employment of the empirical control theory in the 
whole process. The modified Q value is memorized 
not only in the present table, but also in the space 
reserved for the sensor measurement. In that sense, Q 
function will faster converge to its optimal value. Also, 
the new state will have additional source of 
information regarding earlier sensor measurement and 
prescribed Q values, in order to obtain and perform the 
best possible action in a given moment. With blue 
dashed line the novel empirically enhanced obstacle 
avoidance control system is denoted. This algorithm is 
presented in the Figure 5. 

 

θ 

C 

(1) 
(2) 

(0) 

(3) 

(4) 

X

Y 

y 

x 
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Figure 5. Empirically enhanced obstacle avoidance algorithm 

 
5.1 Experimental results 

 
Conducted experiment (without obstacle collision) 
within the laboratory model of manufacturing 
environment is based on presented algorithm (Fig. 5). 
Although tabula rasa mobile robot [10] needs 
enormous number of iterations to fully understand the 
environment, the results presented below showed that 
the Q function correctly updated its coefficients. 
Because the large number of iterations is conducted 
(for real time learning), they were divided into a 
number of steps in which the robot should reach the 
goal position. Iteration is ended in two possible cases: 
if a mobile robot reached the goal for a reasonable time 
or if the user defined time has been exceeded. The Q 
values were memorized (for each iteration), and shown 
in the graph. The obtained results (Figs. 6, 7 and 8) 
denote the number of steps to end iteration, and 

updated Q function for each iteration (episode) that has 
ended. 

 
Figure 6. Experimental results at 11th iteration 

 

Action moving 
forward 

Empirically enhanced 
obstacle avoidence 

control system 

Memorized sensor 
measurements and assigned 

Q value 

Comparison of 
the turning 

left and right 
action 

No Yes  

Safe state 
investigation 

 

Calculation of the current 
transition state

 

Calculation of the current state 

Target location and measure 
nearest obstacle 

New step 

Orientation change 

  

 Turn right action

 

 Choosing action 

 

Turn left action 

No 

 

Calculation of the new 
transition state

Updating Q-table according to 
the Q-learning algorithm 

 

Obstacle 
collision

Yes 

 End 

 

 Final step 
questioning 

 

Goal 
destination 

No 

Yes 

No 

Yes 
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Figure 7. Experimental results at 31st iteration 

 
Figure 8. Experimental results at 50th iteration 

 
6. CONCLUSION 

 
In this paper a new approach for advance control system 
design is presented. The proposed approach is based on 
the empirical control theory, reinforcement learning, 
and the axiomatic design theory. The concept is verified 
for the control problem of mobile robot navigation in an 
unknown environment. For the algorithm evaluation 
LEGO Mindstorms NXT mobile robot was used, which 
was controlled with MATLAB software package. 

The successful machine learning process of a mobile 
robot, as shown in the Figures 6, 7 and 8, was evident. 
Modifying the coefficients in the Q matrix, mobile robot 
was able to make difference between favourable actions 
in its current state. The Q values were adjusted in 
accordance with the described reinforcement learning 
algorithm. Also, a set of sensor measurements was 
memorized and for each of them the appropriate Q 
value was awarded. That value was used as a necessary 
advice for the decision of optimal action selection in the 
present robot state after 50th iteration. With more 
iterations conducted, a mobile robot could perform 
autonomous behaviour as a solution for the navigation 
problem based on the shown experimental results and 
machine learning trend of the proposed control system. 

For future research, as much needed development 
tool for Q function approximation, the artificial neural 
networks (ANN) arise above other solutions for the 

considered problem. Also, ANN can be very useful for 
speeding up the learning process, bearing in mind the 
computational expensiveness of the classical Q-learning 
algorithm. Particularly, implementation of the neural 
networks with a dynamical structure will be considered. 
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ПРИЛОГ РАЗВОЈУ ЕМПИРИЈСКОГ 

УПРАВЉАЧКОГ СИСТЕМА МОБИЛНОГ 
РОБОТА БАЗИРАНОГ НА ЕЛЕМЕНТИМА 
МАШИНСКОГ УЧЕЊА ОЈАЧАВАЊЕМ И 

АКСИОМАТСКОЈ ТЕОРИЈИ ПРОЈЕКТОВАЊА 
 

Марко Митић, Зоран Миљковић, Бојан Бабић 
 
Овај рад представља истраживање аутора у домену 
концепцијског пројектовања управљачког система 
који може да учи на основу сопственог искуства. 
Способност адаптивног понашања при извршавању 
постављеног задатка у реалним, непредвидивим 
условима, један је од кључних задатака сваког 
интелигентног роботског система. У функцији 
решавања овог проблема, предлаже се приступ 
базиран на учењу, и то комбиновањем емпиријске 
управљачке стратегије, машинског учења 
ојачавањем и аксиоматске теорије пројектовања. 
Предложени концепт користи најбоље особине 
поменутих теоријских приступа у циљу остваривања 
оптималне одлуке мобилног робота за тренутно 
стање система. Емпиријска управљачка теорија се, у 
овом раду, a priori користи у утврђивању идејног 
решења за решавање проблема навигације мобилног 
робота. Учење ојачавањем реализује механизме који 
меморишу и ажурирају одговоре окружења, а у 
комбинацији са емпиријском управљачком теоријом 
одређује најбољу могућу одлуку у складу са 
тренутним околностима. Аксиоматска теорија 
пројектовања се користи при дефинисању 
управљачког проблема, као и при успостављању 
концепцијског решења за дати задатак, са аспекта 
примене поменутих приступа. Део предложеног 
алгоритма емпиријског управљања реализован је 
помоћу LEGO Mindstorms NXT мобилног робота, 
третирајући проблем навигације у непознатом 
окружењу. Остварени експериментални резултати 
наговештавају добру перспективу за реализацију 
ефикасног управљања базираног на искуству, чији 
даљи развој може да доведе до остварења 
аутономног понашања мобилног робота при 
избегавању препрека у технолошком окружењу, што 
је и очекивани научни циљ. 

 


