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1. Introduction

The Banach contraction principle [1] of 1922 forms the basis for metric fixed-point the-
ory. The principle is not just a source of inspiration but also a point of origin for establishing
the fixed-point results both of Hausdorff and of non-Hausdorff topological spaces with vast
applications not just in science, technology, engineering, and mathematics (STEM) but also
in economics, game theory, and other fields as well. Using this principle, fixed-point results
have been established in various topological spaces. Due to its generalized nature, metric
space is the obvious choice for any mathematician for applications in real-life situations.ü

Metric fixed-point theory is used to solve different types of mathematical problems
such as dynamic programming, variational inequalities, nonlinear differential equations,
fractal dynamics, and satellite launch. It also ensures that patients receive the most appro-
priate diagnosis, and it examines the intensity of the spread of contagious diseases in a
variety of cities.

The study of new space discoveries in mathematics and their basic properties are
always favorite topics of interest among the mathematical research community. In this
context, the concept of 2-metric spaces was introduced initially by Gahler [2] in his series
of papers, and it drew attention to new dimensions for ordinary metric spaces. Since
the metric for a pair of points is non-negative real, i.e., [0,+∞), it has wide scope for
further study.
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Various types of distances such as those between points of a set are considered in
metric spaces and their generalization. However, we come across situations where distances
arise between elements of two different sets rather than between points of a unique set,
wherein the distances between the same type of points are either not known or not defined,
due to lack of data. In a Euclidean space, the distance between points and lines; in a metric
space, the distance between sets and points; and the reaction rates of pairs from disjoint sets
of chemical substances are some examples of such distances. The concept of probabilistic
metric spaces in which the probabilistic distance between two points is considered has
provided a new dimension for the study of stars in the universe.

Mutlu et al. [3] formalized these types of distances as the bipolar metric, considering
them only isometrically without analyzing their topological structures in detail. They intro-
duced the concept of bipolar metric spaces (bpms) and proved certain fixed-point theorems.

Definition 1 ([3]). Let Φ and Λ be non empty sets. Let d : Φ×Λ→ (0, ∞) be a map satisfying:

(a) d(ϑ, v) = 0 if and only if ϑ = v, for all (ϑ, v) ∈ Φ×Λ
(b) d(ϑ, v) = d(v, ϑ), for all (ϑ, v) ∈ Φ×Λ
(c) d(ϑ, v) = d(v, ϑ) for all (ϑ, v) ∈ Φ

⋂
Λ

(d) d(ϑ, v) ≤ d(ϑ, σ) + d(ϑ1, σ) + d(ϑ1, v), for all ϑ, ϑ1 ∈ Φ and σ, v ∈ Λ.

The pair (Φ, Λ, d) is a bpms.

Remark 1. Suppose (a) in the above definition is replaced with (a∗) as: ϑ = v implies d(ϑ, v) = 0;
then, (Φ, Λ, d) is a bipolar pseudo-metric space.

In the recent past, mathematicians have established many fixed-point results under
various contractive conditions in the setting of bpms (see [4–25]).

Ma et al. [26] defined the concept of C?-algebra-valued metric space and proved
Banach’s contraction principle. Later, fixed-point results in the setting of a C?-valued
contractive-type map were established by Batul and Kamran [27]. For further details on
C?-algebra, please refer to [28–31]. Recently, Guna et al. [25] introduced the notion of
C?-algebra-valued bipolar metric space and proved fixed-point results therein. Inspired
by the proven results, we establish fixed-point results in the setting of C?-algebra-valued
bipolar metric space and find its application to prove the existence of unique solutions to
integral equations.

The rest of the paper is organized as follows: In Section 2, we present certain basic
concepts and monographs that are required for our main result. In Section 3, we present
our main result of establishing the fixed-point results for covariant and contravariant maps
in the setting of C?-algebra-valued bipolar metric space. We support our main results with
suitable non-trivial examples. We present an application to analyze the applicability of our
main result for finding the existence of a unique common solution for an integral equation
and a voltage differential equation in an electric circuit.

2. Preliminaries

Let us begin with some basic concepts and definitions, which are very essential in
the sequel.

An algebra A, with a conjugate linear involution map η 7−→ η?, is called a ?-algebra,
if (η$)? = $?η? and (η?)? = η for all $, η ∈ A. If A contains the identity element 1A ∈ A,
then (A, ?) is a unital ?-algebra. A complete normed unital ?-algebra is called a Banach
?-algebra (A, ?) where the norm on A is sub-multiplicative and satisfies

∥∥η?
∥∥ =

∥∥η
∥∥ for

all η ∈ A. If
∥∥η?η

∥∥ =
∥∥η
∥∥2 for all η ∈ A, in a Banach ?-algebra (A, ?), then A is known

as a C?-algebra. η ∈ A is called a positive element, if η = η? and its spectrum σ(η) ⊂ R+,
where σ(η) = {µ ∈ R : µ1A − η is non-invertible}.
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A+ denotes the collection of all positive elements that defines a partial order � on A.
That is,

$ � η i f f $− η ∈ A+.

Let 0A be the zero element. Then, η � 0A, if η is positive. Each positive element η of a
C?-algebra A has a unique positive square root denoted by η

1
2 in A.

Hereafter, A represents a unital C?-algebra with identity element 1A. Additionally, A+

= {η ∈ A : η � 0A} and (η?η)1/2 =||η||.

Definition 2 ([26]). Let A be a C∗-algebra, and Φ, Λ 6= φ. Let d : Φ × Λ → A+ be a map
satisfying

(a) d(ϑ, v) = 0 iff ϑ = v, for all (ϑ, v) ∈ Φ×Λ
(b) d(ϑ, v) = d(v, ϑ), for all (ϑ, v) ∈ Φ×Λ
(c) d(ϑ, v) ≤ d(ϑ, γ) + d(ϑ1, γ) + d(ϑ1, v), for all ϑ, ϑ1 ∈ Φ and γ, v ∈ Λ.

The 4-tuple (Φ, Λ,A, d) is a C?-algebra-valued bipolar metric space.

Lemma 1 ([29,31]). Let A be a unital C?-algebra, where 1A is the identity element.

(A1) If ϑ ∈ A+, then ϑ � 1A if and only if ||ϑ|| ≤ 1.
(A2) If δ ∈ A+ with ||δ|| < 1

2 , then (1A − δ) is invertible and ||δ(1A − δ)−1|| < 1.
(A3) Suppose that δ, $ ∈ A with δ$ � θ and δ$ = $δ, then $δ � θ.
(A4) By A′, we denote the set {δ ∈ A : δ$ = $δ, for all $ ∈ A}. Let δ ∈ A′, if $, c ∈ A with

$ � c � θ, and 1A − δ ∈ A′+ is an invertible operator, then

(1A − δ)−1$ � (1A − δ)−1c.

Remark 2. It may be noted that in a C?-algebra, if θ � δ, $, one cannot conclude that θ � δ$.

Definition 3. Let (Φ1, Λ1,A, d) and (Φ2, Λ2,A, d) be two C?-algebra-valued bipolar metric spaces
and given a map Υ : Φ1 ∪Λ1 → Φ2 ∪Λ2.

(B1) If Υ(Φ1) ⊆ Φ2 and Υ(Λ1) ⊆ Λ2, then Υ is called a covariant map, or a map from
(Φ1, Λ1,A, d1) to (Φ2, Λ2,A, d2), and this is written as
Υ : (Φ1, Λ1,A, d1) ⇒ (Φ2, Λ2,A, d2).

(B2) If Υ(Φ1) ⊆ Λ2 and Υ(Λ1) ⊆ Φ2, then Υ is called a contravariant map from (Φ1, Λ1,A, d1)
to (Φ2, Λ2,A, d2), and this is denoted as:
Υ : (Φ1, Λ1,A, d1) � (Φ2, Λ2,A, d2).

Definition 4. Let (Φ, Λ,A, d) be a C?-algebra-valued bipolar metric space.

(C1) A sequence ({ϑn}, {vn}) on the set Φ×Λ is called a bisequence on (Φ, Λ,A, d).
(C2) A point ϑ ∈ Φ ∪Λ is said to be a left point, if ϑ ∈ Φ, a right point if ϑ ∈ Λ and a central

point if ϑ ∈ Φ ∩Λ. Similarly, a sequence {ϑn} on the set Φ and a sequence {vn} on the
set Λ are called left and right sequence, respectively, with respect to A.

(C3) A sequence {ϑn} converges to a point v (with respect to A) if {ϑn} is a left sequence, v is
a right point, and lim

n→∞
d(ϑn, v) = 0A, or if

{ϑn} is a right sequence, v is a left point, and lim
n→∞

d(v, ϑn) = 0A.

(C4) If both {ϑn} and {vn} converge (with respect to A), then the bisequence ({ϑn}, {vn}) is
said to be convergent (with respect to A). If {ϑn} and {vn} both converge (with respect to
A) to a same point u ∈ Φ ∩Λ, then this bisequence is said to be biconvergent (with respect
to A).

(C5) A bisequence ({ϑn}, {vn}) on (Φ, Λ,A, d) is said to be a Cauchy bisequence (with respect
to A), if lim

n,m→∞
d(ϑn, vm) = 0A.

(C6) (Φ, Λ,A, d) is complete if every Cauchy bisequence (with respect to A) is convergent.
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3. Main Results

Now, we present our first fixed-point result using covariant maps in the setting
of bpms.

Theorem 1. Let (Φ, Λ,A, d) be a complete C?-algebra-valued bipolar metric space. Suppose
Υ, Ω : (Φ, Λ,A, d) ⇒ (Φ, Λ,A, d) are covariant maps such that

d(Υ(ϑ), Ω(v)) � µ?d(ϑ, v)µ for all ϑ ∈ Φ, v ∈ Λ,

where µ ∈ A with ||µ||2 < 1. Then, Υ, Ω : Φ ∪Λ→ Φ ∪Λ have a unique common fixed point.

Proof. If A = {0A}, then we are done. Suppose not. Let ϑ0 ∈ Φ and v0 ∈ Λ. For each
n ∈ N, define Υ(ϑ2n) = ϑ2n+1, Ω(ϑ2n+1) = ϑ2n+2 and Υ(v2n) = v2n+1, Ω(v2n+1) =
v2n+2 ({ϑn}, {vn}) is a bisequence on (Φ, Λ,A, d). LetM := d(ϑ0, v1) + d(ϑ0, v0) and
S := d(ϑ1, v0) + d(ϑ0, v0). Then, for each n, p ∈ Z+,

d(ϑ2n+1, v2n+2) = d(Υϑ2n, Ωv2n+1)

� µ?d(ϑ2n, v2n+1)µ

= µ?d(Υϑ2n−1, Ωv2n)µ

� (µ?)2d(ϑ2n−1, v2n)µ
2

� (µ?)3d(ϑ2n−2, v2n−1)µ
3

...

� (µ?)2n+1d(ϑ0, v1)µ
2n+1,

d(ϑ2n+2, v2n+1) = d(Υϑ2n+1, Ωv2n)

� µ?d(ϑ2n+1, v2n)µ

= µ?d(Υϑ2n, Ωv2n−1)µ

� (µ?)2d(ϑ2n, v2n−1)µ
2

� (µ?)3d(ϑ2n−1, v2n−2)µ
3

...

� (µ?)2n+1d(ϑ1, v0)µ
2n+1,

d(ϑ2n+1, v2n+1) = d(Υϑ2n, Ωv2n)

� µ?d(ϑ2n, v2n)µ

= µ?d(Υϑ2n−1, Ωv2n−1)µ

� (µ?)2d(ϑ2n−1, v2n−1)µ
2

� (µ?)3d(ϑ2n−2, v2n−2)µ
3

...

� (µ?)2n+1d(ϑ0, v0)µ
2n+1.
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d(ϑn+p, vn) � d(ϑn+p, vn+1) + d(ϑn, vn+1) + d(ϑn, vn)

� d(ϑn+p, vn+1) + (µ?)nMµn

� d(ϑn+p, vn+2) + d(ϑn+1, vn+2) + d(ϑn+1, vn+1) + (µ?)nMµn

� d(ϑn+p, vn+2) + (µ?)n+1Mµn+1 + (µ?)nMµn

...

� d(ϑn+p, vn+p) + (µ?)n+p−1Mµn+p−1 + · · ·+ (µ?)n+1Mµn+1 + (µ?)nMµn

� (µ?)n+pMµn+p + (µ?)n+p−1Mµn+p−1 + · · ·+ (µ?)n+1Mµn+1 + (µ?)nMµn

=
n+p

∑
k=n

(µ?)kMµk

=
n+p

∑
k=n

(µ?)kM
1
2M

1
2 µk

=
n+p

∑
k=n

(M
1
2 µk)?M

1
2 µk

=
n+p

∑
k=n

|M
1
2 µk|2

�
n+p

∑
k=n

||M
1
2 µk||21A

�
n+p

∑
k=n

||M||||µk||21A

� ||M||
n+p

∑
k=n

||µ2||k1A → 0 as n, p→ +∞

and

d(ϑn, vn+p) � d(ϑn, vn) + d(ϑn+1, vn) + d(ϑn+1, vn+p)

� (µ?)nd(ϑ0, v0)µ
n + (µ?)nd(ϑ1, v0)µ

n + d(ϑn+1, vn+p)

� (µ?)nSµn + d(ϑn+1, vn+1) + d(ϑn+2, vn+1) + d(ϑn+2, vn+p)

� (µ?)nSµn + (µ?)n+1Sµn+1 + d(ϑn+2, vn+p)

...

� (µ?)nSµn + (µ?)n+1Sµn+1 + · · ·+ (µ?)n+p−1Sµn+p−1 + d(ϑn+p, vn+p)

� (µ?)nSµn + (µ?)n+1Sµn+1 + · · ·+ (µ?)n+p−1Sµn+p−1 + (µ?)n+pSµn+p

=
n+p

∑
k=n

(µ?)kSµk

=
n+p

∑
k=n

(µ?)kS
1
2S

1
2 µk

=
n+p

∑
k=n

(S
1
2 µk)?S

1
2 µk
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�
n+p

∑
k=n

||S
1
2 µk||21A

�
n+p

∑
k=n

||S
1
2 ||2||µk||21A

� ||S
1
2 ||2

n+p

∑
k=n

||µ||2k1A

→ 0 as n, p→ +∞.

Therefore, ({ϑn}, {vn}) is a Cauchy bisequence in Φ with regard to A. By the
completeness of (Φ, Λ,A, d), we have, ϑn → φ and vn → φ, where φ ∈ Φ ∩ Λ. Since
({ϑn}, {vn}) is a Cauchy bisequence, we have d(ϑn, vn) ≺ ε. Now,

d(Υφ, φ) � d(Υφ, vn+1) + d(ϑn+1, vn+1) + d(ϑn+1, φ)

� d(Υφ, Ωvn) + d(ϑn+1, vn+1) + d(ϑn+1, φ)

� µ∗d(φ, vn)µ + d(ϑn+1, vn+1) + d(ϑn+1, φ)

≺ µ∗d(φ, vn)µ + ε + d(ϑn+1, φ).

As n→ +∞,

d(Υφ, φ) ≺ ε.

Therefore, Υ(φ) = φ.
Note that,

d(φ, Ωφ) = d(Υφ, Ωφ) � µ∗d(φ, φ)µ = 0.

Therefore, Ω(φ) = φ. Hence, φ is the common fixed point of Υ and Ω. To prove
uniqueness, suppose that ψ ∈ Φ ∪Λ is another common fixed point of Φ and Λ such that
Ωψ = Υψ = ψ. Then,

0A � d(φ, ψ) = d(Υφ, Ωψ) � µ∗d(φ, ψ)µ.

From the norm of A,

0 ≤
∥∥∥d(φ, ψ)

∥∥∥ ≤ ∥∥∥µ∗d(φ, ψ)µ
∥∥∥ ≤ ∥∥∥µ∗

∥∥∥∥∥∥d(φ, ψ)
∥∥∥∥∥µ

∥∥ =
∥∥µ
∥∥2
∥∥∥d(φ, ψ)

∥∥∥.

The above inequality holds only when d(φ, ψ) = 0A. Hence, φ = ψ.

Example 1. Let Φ = [0, 2], Λ = {0} ∪N− {1, 2}, and A =M2(C). Define d : Φ×Λ → A
by

d(ϑ, v) =

(
|ϑ−v| 0

0 α|ϑ−v|

)
for all ϑ ∈ Φ and v ∈ Λ, where α ≥ 0 is a constant. Consider the partial ordering � on A
such that,

(δ1, $1) � (δ2, $2) if and only if δ1 ≤ δ2 and $1 ≤ $2.

Then, (Φ, Λ,A, d) is a complete C?-algebra-valued bipolar metric space.
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Define Υ, Ω : Φ ∪Λ ⇒ Φ ∪Λ by

Υ(ϑ) =

{
ϑ
4 , if ϑ ∈ [0, 2],
ϑ
6 , if ϑ ∈ N− {1, 2},

and

Ω(ϑ) =

{
ϑ
6 , if ϑ ∈ [0, 2],
ϑ
4 , if ϑ ∈ N− {1, 2},

for all ϑ ∈ Φ ∪Λ. Now, we consider two cases:
Case 1: Let ϑ ∈ [0, 2] and v ∈ N− {1, 2}, then

d(Υϑ, Ωv) =

(
|Υϑ−Ωv| 0

0 α|Υϑ−Ωv|

)
=

(
| ϑ4 −

v
4 | 0

0 α| ϑ4 −
v
4 |

)
=

1
4

(
|ϑ−v| 0

0 α|ϑ−v|

)
= µ?d(ϑ, v)µ,

where

µ =

( 1
4 0
0 1

4

)
and ||µ|| = 1

4 < 1.
Case 2: Let v ∈ [0, 2] and ϑ ∈ N− {1, 2}, then

d(Υϑ, Ωv) =

(
|Υϑ−Ωv| 0

0 α|Υϑ−Ωv|

)
=

(
| ϑ6 −

v
6 | 0

0 α| ϑ6 −
v
6 |

)
=

1
6

(
|ϑ−v| 0

0 α|ϑ−v|

)
= µ?d(ϑ, v)µ,

where

µ =

( 1
6 0
0 1

6

)
and ||µ|| = 1

6 < 1. Both the cases satisfy Theorem 1, and ϑ = 0 is the unique fixed point of Υ.

Now, we prove a similar result for contravariant maps.

Theorem 2. Let (Φ, Λ,A, d) be a complete C?-algebra-valued bipolar metric space. Suppose
Υ, Ω : (Φ, Λ,A, d) � (Φ, Λ,A, d) are contravariant maps such that

d(Υ(v), Ω(ϑ)) � µ?d(ϑ, v)µ for all ϑ ∈ Φ, v ∈ Λ,

where µ ∈ A with ||µ||2 < 1. Then, Υ, Ω : Φ ∪Λ→ Φ ∪Λ have a unique common fixed point.



Mathematics 2022, 10, 4385 8 of 16

Proof. If A = {0A}, then we are done. Suppose not. Let ϑ0 ∈ Φ and v0 ∈ Λ. For each
n ∈ N, define Υ(ϑ2n) = v2n, Ω(ϑ2n+1) = v2n+1 and Υ(v2n) = ϑ2n+1, Ω(v2n+1) = ϑ2n+2.
Then, ({ϑn}, {vn}) bisequence on (Φ, Λ,A, d). Let G := d(ϑ0, v0). Then, for each n, p ∈ Z+,

d(ϑ2n+1, v2n+1) =d(Υv2n, Ωϑ2n+1)

� µ?d(ϑ2n+1, v2n)µ

= µ?d(Υv2n, Ωϑ2n)µ

� (µ?)2d(ϑ2n, v2n)µ
2

� (µ?)4d(ϑ2n−1, v2n−1)µ
4

...

� (µ?)4n+2d(ϑ0, v0)µ
4n+2,

d(ϑ2n+1, v2n) =d(Υv2n, Ωϑ2n)

� µ?d(ϑ2n, v2n)µ

� (µ?)4n+1d(ϑ0, v0)µ
4n+1,

d(ϑn+p, vn) � d(ϑn+p, vn+1) + d(ϑn+1, vn+1) + d(ϑn+1, vn)

� d(ϑn+p, vn+1) + (µ?)2n+2d(ϑ0, v0)µ
2n+2 + (µ?)2n+1d(ϑ0, v0)µ

2n+1

� d(ϑn+p, vn+2) + d(ϑn+2, vn+2) + d(ϑn+2, vn+1) + (µ?)2n+2d(ϑ0, v0)µ
2n+2

+ (µ?)2n+1d(ϑ0, v0)µ
2n+1

� d(ϑn+p, vn+2) + (µ?)2n+4d(ϑ0, v0)µ
2n+4 + (µ?)2n+3d(ϑ0, v0)µ

2n+3

+ (µ?)2n+2d(ϑ0, v0)µ
2n+2

+ (µ?)2n+1d(ϑ0, v0)µ
2n+1

...

� d(ϑn+p, vn+p−1) + (µ?)2n+2p−2d(ϑ0, v0)µ
2n+2p−2

+ · · ·+ (µ?)2n+1d(ϑ0, v0)µ
2n+1

� (µ?)2n+2p−1d(ϑ0, v0)µ
2n+2p−1 + (µ?)2n+2p−2d(ϑ0, v0)µ

2n+2p−2

+ · · ·+ (µ?)2n+1d(ϑ0, v0)µ
2n+1

=
2n+2p−1

∑
k=2n+1

(µ?)kGµk

=
2n+2p−1

∑
k=2n+1

(µ?)kG
1
2G

1
2 µk

=
2n+2p−1

∑
k=2n+1

(G
1
2 µk)?G

1
2 µk

=
2n+2p−1

∑
k=2n+1

|G
1
2 µk|2

�
2n+2p−2

∑
k=2n

||G
1
2 µk||21A
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�
2n+2p−1

∑
k=2n+1

||G||||µk||21A

� ||G||
2n+2p−1

∑
k=2n+1

||µ2||k1A → 0 as n, p→ +∞,

d(ϑn, vn+p) � d(ϑn, vn) + d(ϑn+1, vn) + d(ϑn+1, vn+p)

� (µ?)2nd(ϑ0, v0)µ
2n + (µ?)2n+1d(ϑ0, v0)µ

2n+1 + d(ϑn+1, vn+p)

� (µ?)2nd(ϑ0, v0)µ
2n + (µ?)2n+1d(ϑ0, v0)µ

2n+1 + d(ϑn+1, vn+1)

+ d(ϑn+2, vn+1) + d(ϑn+2, vn+p)

� (µ?)2nd(ϑ0, v0)µ
2n + (µ?)2n+1d(ϑ0, v0)µ

2n+1 + (µ?)2n+2d(ϑ0, v0)µ
2n+2

+ (µ?)2n+3d(ϑ0, v0)µ
2n+3 + d(ϑn+2, vn+p)

...

� (µ?)2nd(ϑ0, v0)µ
2n + (µ?)2n+1d(ϑ0, v0)µ

2n+1 + (µ?)2n+2d(ϑ0, v0)µ
2n+2

+ · · ·+ (µ?)2n+2p−1d(ϑ0, v0)µ
2n+2p−1 + d(ϑn+p, vn+p)

� (µ?)2nd(ϑ0, v0)µ
2n + (µ?)2n+1d(ϑ0, v0)µ

2n+1 + (µ?)2n+2d(ϑ0, v0)µ
2n+2

+ · · ·+ (µ?)2n+2p−1d(ϑ0, v0)µ
2n+2p−1 + (µ?)2n+2pd(ϑ0, v0)µ

2n+2p

=
2n+2p

∑
k=2n

(µ?)kGµk

=
2n+2p

∑
k=2n

(µ?)kG
1
2G

1
2 µk

=
2n+2p

∑
k=2n

(G
1
2 µk)?G

1
2 µk

=
2n+2p

∑
k=2n

|G
1
2 µk|2

�
2n+2p

∑
k=2n

||G
1
2 µk||21A

�
2n+2p

∑
k=2n

||G||||µk||21A

� ||G||
2n+2p

∑
k=2n

||µ2||k1A → 0 as n, p→ +∞.

Therefore, ({ϑn}, {vn}) is a Cauchy bisequence in Φ with respect to A. By the com-
pleteness of (Φ, Λ,A, d), it follows that ϑn → φ and vn → φ, where φ ∈ Φ ∩ Λ. Since
({ϑn}, {vn}) is a Cauchy bisequence, we have d(ϑn, vn) ≺ ε. Now,

d(Ωφ, φ) � d(Ωφ, vn+1) + d(ϑn+1, vn+1) + d(ϑn+1, φ)

� d(Ωφ, Υϑn+1) + d(ϑn+1, vn+1) + d(ϑn+1, φ)

� µ∗d(ϑn+1, φ)µ + d(ϑn+1, vn+1) + d(ϑn+1, φ)

≺ µ∗d(ϑn+1, φ)µ + ε + d(ϑn+1, φ).

As n→ +∞,

d(Ωφ, φ) ≺ ε.
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Therefore, Ω(φ) = φ. Note that,

d(φ, Υφ) = d(Ωφ, Υφ) � µ∗d(φ, φ)µ = 0.

Therefore, Ω(φ) = φ. Hence, φ is a common fixed point of Υ and Ω. Let ψ ∈ Φ ∪Λ be
a another common fixed point of Φ and Λ such that Ωψ = Υψ = ψ. Then,

0A � d(φ, ψ) = d(Ωφ, Υψ) � µ∗d(φ, ψ)µ.

Using the norm of A, we have

0 ≤
∥∥∥d(φ, ψ)

∥∥∥ ≤ ∥∥∥µ∗d(φ, ψ)µ
∥∥∥ ≤ ∥∥∥µ∗

∥∥∥∥∥∥d(φ, ψ)
∥∥∥∥∥µ

∥∥ =
∥∥µ
∥∥2
∥∥∥d(φ, ψ)

∥∥∥.

The above inequality holds only when d(φ, ψ) = 0A. Hence, φ = ψ.

Example 2. Let Φ = {0, 1, 2, 7}, Λ = {0, 1
4 , 1

2 , 3}, A = M2(C), and d : Φ × Λ → A be
defined by

d(ϑ, v) =

(
|ϑ−v| 0

0 α|ϑ−v|

)
for all ϑ ∈ Φ and v ∈ Λ, where α ≥ 0 is a constant. Let � be the partial order on A given by

(δ1, $1) � (δ2, $2) if and only if δ1 ≤ δ2 and $1 ≤ $2.

Then, (Φ, Λ,A, d) is a complete C?-algebra-valued bipolar metric space. Define Υ : Φ ∪Λ �
Φ ∪Λ by

Υ(ϑ) =

{
ϑ
5 , if ϑ ∈ {0, 7, 2},
ϑ
7 , if ϑ ∈ { 1

4 , 1
2 , 1, 3},

Ω(ϑ) =

{
ϑ
7 , if ϑ ∈ {0, 7, 2},
ϑ
5 , if ϑ ∈ { 1

4 , 1
2 , 1, 3},

for all ϑ ∈ Φ ∪Λ. We have the following two cases:
Case 1: Let ϑ ∈ {0, 7, 2} and v ∈ { 1

4 , 1
2 , 1, 3}; then,

d(Υv, Ωϑ) =

(
|Υv−Ωϑ| 0

0 α|Υv−Ωϑ|

)
=

(
| ϑ7 −

v
7 | 0

0 α| ϑ7 −
v
7 |

)
=

1
7

(
|ϑ−v| 0

0 α|ϑ−v|

)
=µ?d(ϑ, v)µ,

where

µ =

( 1
7 0
0 1

7

)
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and ||µ|| = 1
7 < 1.

Case 2: Let v ∈ {0, 7, 2} and ϑ ∈ { 1
4 , 1

2 , 1, 3}; then,

d(Υϑ, Ωv) =

(
|Υϑ−Ωv| 0

0 α|Υϑ−Ωv|

)
=

(
| ϑ5 −

v
5 | 0

0 α| ϑ5 −
v
5 |

)
=

1
5

(
|v− ϑ| 0

0 α|v− ϑ|

)
=µ?d(v, ϑ)µ,

where

µ =

( 1
5 0
0 1

5

)
and ||µ|| = 1

5 < 1.
The above two cases satisfy Theorem 2, and ϑ = 0 is the unique fixed point of Υ.

4. Application

Now, we present an application of Theorem 1 to integral equations.

Theorem 3. Consider the equations

ϑ(t) = $(t) +
∫
Z1∪Z2

G1(t, s, ϑ(s))ds, t ∈ Z1 ∪ Z2

and

ϑ(t) = $(t) +
∫
Z1∪Z2

G2(t, s, ϑ(s))ds, t ∈ Z1 ∪ Z2,

where Z1 ∪ Z2 is a Lebesgue measurable set. Suppose

(T1) G1,G2 : (Z2
1 ∪ Z2

2 )× [0, ∞)→ [0, ∞) and b ∈ L∞(Z1) ∪ L∞(Z2),
(T2) there is a continuous function θ : Z2

1 ∪ Z2
2 → [0, ∞) and µ ∈ (0, 1) such that

|G1(t, s, ϑ(s))− G2(t, s, v(s)| ≤ µ|θ(t, s)||ϑ(s)−v(s)|,

for t, s ∈ Z2
1 ∪ Z2

2 ,
(T3) supt∈Z1∪Z2

∫
Z1∪Z2

θ(t, s)ds ≤ 1.

Then, the integral equations have a unique common solution in L∞(Z1) ∪ L∞(Z2).

Proof. Consider two normed linear spaces Φ = L∞(Z1) and Λ = L∞(Z2), where Z1,Z2
are Lebesgue measurable sets and m(Z1 ∪ Z2) < ∞. Let A = L2(Z1) ∪ L2(Z2). Consider
d : Φ×Λ → L(A) defined by d(ϑ, v) = π|ϑ−v|, where πh : A → A is the multiplication
operator defined by πh(σ) = h.σ for σ ∈ A. Then, (Φ, Λ,A, d) is a complete C?-algebra-
valued bipolar metric space.

Define the covariant maps Υ, Ω : L∞(Z1) ∪ L∞(Z2)→ L∞(Z1) ∪ L∞(Z2) by

Υ(ϑ(t)) = $(t) +
∫
Z1∪Z2

G1(t, s, ϑ(s))ds, t ∈ Z1 ∪ Z2.

Ω(ϑ(t)) = $(t) +
∫
Z1∪Z2

G2(t, s, ϑ(s))ds, t ∈ Z1 ∪ Z2.
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Set B = µI, then B ∈ L(A)+ and ||B|| = µ < 1. For any h ∈ A,

||d(Υϑ, Ωv)|| = sup∥∥h∥∥=1

(π|Υϑ−Ωv|h, h)

= sup∥∥h∥∥=1

∫
Z1∪Z2

[ ∫
Z1∪Z2

|G1(t, s, ϑ(s))− G2(t, s, v(s))|ds
]
h(t)h(t)dt

≤ sup∥∥h∥∥=1

∫
Z1∪Z2

[ ∫
Z1∪Z2

|G1(t, s, ϑ(s))− G2(t, s, v(s))|ds
]
|h(t)|2dt

≤ sup∥∥h∥∥=1

∫
Z1∪Z2

[ ∫
Z1∪Z2

µ|θ(t, s)||ϑ(s)−v(s)|ds
]
|h(t)|2dt

≤ µ sup∥∥h∥∥=1

∫
Z1∪Z2

[ ∫
Z1∪Z2

|θ(t, s)|ds
]
|h(t)|2dt.||ϑ−v||∞

≤ µ sup
t∈Z1∪Z2

∫
Z1∪Z2

|θ(t, s)|ds. sup∥∥h∥∥=1

∫
Z1∪Z2

|h(t)|2dt.||ϑ−v||∞

≤ µ||ϑ−v||∞
= ||B||||d(ϑ, v)||.

One can easily see that Theorem 1 is satisfied as ||B|| < 1, and hence the integral
equations have a unique common solution.

5. Application to Electric Circuit Differential Equation

In this section, we study the existence and unique solution to an electric circuit differ-
ential equation as an application of Theorem 1.

Let us consider a series electric circuit that contains a resistor (R, Ohms), a capacitor
(C, Faradays), an inductor (L, Henries), a voltage (V , Volts), and an electromotive force (E ,
Volts), as in the following scheme, Figure 1.

Figure 1. RLC circuit in series.

Considering the definition of the intensity of electric currents Ii = dqi
dt , i = 1, 2 where

qi denote the electric charges and t the time, let us recall the following usual formulas:

• VR = IiR;
• VC = qi

C
• VL = LdIi

dt
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In a series circuit, the current flowing through the circuit is uniform. So, Ii have the
same value throughout the entire circuit.

One of the fundamental laws of circuit theory is Kirchhoff’s voltage law. It states that
the algebraic sum of all the voltages around any closed loop in a circuit is equal to zero.
Kirchhoff’s Voltage Law is based on the fact that while moving along a closed loop or a
circuit, one can find that the starting and ending points are the same. The voltage drop
in the circuit equals the voltage source. This implies that there is no voltage loss in the
circuit. Voltage drop, if any, will be equal to the voltage source encountered along the way.
Mathematically, the sum of the voltage drops equals the sum of the voltage rises across any
circuit. Accordingly, we have the following:

IiR+
qi
C + LdIi

dt
= V = Vv(t), i = 1, 2.

The above voltage equation can be expressed as follows:

Ld2qi
dt2

+Rdqi
dt

+
qi
C = Vv(t), with the initial conditions, qi(0) = 0, q

′
i(0) = 0, i = 1, 2 (1)

where C = 4L
R2 and τ = R

2L - the nondimensional time for the resonance case in physics.
Moreover,

G(t, s) =
{
−se−τ(s−t), i f 0 ≤ s ≤ t ≤ 1;
−te−τ(s−t), i f 0 ≤ t ≤ s ≤ 1,

where, G(t, s) represents the Green function associated with the second order differential
Equation (1).

In these conditions, Equation (1) can be expressed as the following set of integral
equations.

ϑ(t) =
∫ t

0
G(t, s)f1(s, ϑ(s))ds, where t ∈ [0, 1] (2)

ϑ(t) =
∫ t

0
G(t, s)f2(s, ϑ(s))ds, where t ∈ [0, 1] (3)

and fi(s, ·) : [0, 1]×R→ R is a monotonically nondecreasing map for all s ∈ [0, 1].
Let Φ = (C[0, 1], [0,+∞)) be the set of all continuous functions defined in [0, 1] with

values in the interval [0,+∞), and let Λ = (C[0, 1], (−∞, 0]) be the set of all continuous
functions defined on [0, 1] with values in the interval (−∞, 0]. Let A = M2(C) and
d : Φ×Λ→ A+ be defined by

d(ϑ, v) =

[
supt∈[0,1] |ϑ(t)−v(t)| 0

0 k supt∈[0,1] |ϑ(t)−v(t)|

]

for all ϑ ∈ Φ and v ∈ Λ, where k ≥ 0 is a constant. Then, (Φ, Λ,A, d) is a complete
C?-algebra-valued bipolar metric space.

Now, let us give the main result of this section.

Theorem 4. Let Υ, Ω : (Φ, Λ,A, d) ⇒ (Φ, Λ,A, d) be maps such that the following asser-
tions hold:

(i) G : [0, 1]2 → [0, ∞) is a continuous function;
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(ii) fi(s, ·) : [0, 1] × R → R, i = 1, 2 is a monotonically non-decreasing function for all
s ∈ [0, 1] such that for (ϑ, v) ∈ (Φ, Λ), we have the inequality:

|f1(t, ϑ)− f2(t, v)| ≤ 1
2
|ϑ(t)−v(t)|;

(iii) supt∈[0,1]
∫ t

0 G(t, s) ≤ 1.

Then, the voltage differential Equation (1) has a unique common solution.

Proof. Define the covariant maps Υ, Ω : (Φ, Λ,A, d) ⇒ (Φ, Λ,A, d) by

Υϑ(t) =
∫ t

0
G(t, s)f1(s, ϑ(s))ds.

and

Ωϑ(t) =
∫ t

0
G(t, s)f2(s, ϑ(s))ds.

Now,

d(Υϑ, Ωv) =

[
supt∈[0,1] |Υϑ(t)−Ωv(t)| 0

0 k supt∈[0,1] |Υϑ(t)−Ωv(t)|

]

≤

 supt∈[0,1]
∫ t

0 G(t, s)|f1(s, ϑ(s))− f2(s, v(s))|ds 0

0 k supt∈[0,1]
∫ t

0 G(t, s)|f1(s, ϑ(s))− f2(s, v(s))|ds



≤
[

1
2 supt∈[0,1] |ϑ(t)−v(t)| 0

0 k 1
2 supt∈[0,1] |ϑ(t)−v(t)|

]

=
1
2

[
supt∈[0,1] |ϑ(t)−v(t)| 0

0 k supt∈[0,1] |ϑ(t)−v(t)|

]
= µ?d(ϑ, v)µ,

where

µ =

[ 1√
2

0

0 1√
2

]

and ||µ|| = 1√
2
< 1. Therefore,

d(Υϑ, Ωv) ≤ µ?d(ϑ, v)µ.

All conditions of Theorem 1 are satisfied. Hence, the differential voltage Equation (1)
has a unique common solution.

6. Conclusions

It has been established that the generalization of the Banach contraction principle in
various topological spaces helps in establishing fixed-point results under varius contractive
conditions. We established fixed-point results using covariant and contravariant maps
in the setting of the C?-algebra-valued bipolar metric space, supplemented with suitable
examples. The derived results have been applied to analyze the existence of the unique
common solution to integral equations and the voltage differential equations of electric
circuits. This research explores the possibility of establishing fixed-point results using the
Ćirić type, the Nadler type, the Prešić type, and the Meir–Keeler type of contractions, in the
setting of C?-algebra-valued bipolar metric space and its applications therein.
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