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PII: S0032-5910(14)01033-X
DOI: doi: 10.1016/j.powtec.2014.12.051
Reference: PTEC 10712

To appear in: Powder Technology

Received date: 14 July 2014
Revised date: 22 December 2014
Accepted date: 28 December 2014
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Abstract

Using the optimal control theory, the problem of finding profiles of gravity

flow discharge chutes required to achieve maximum exit velocity of granular

material under the speed dependent resisting forces is solved. A model of

a particle moving down a curve which is treated as an unilateral constraint

is used. The fast flow condition and the condition that the particle does

not leave the curve are introduced as the additional inequality constraints.

The influence of the initial particle speed and the power of the speed in the

expression for the resisting force on the optimal chute profile is analysed.
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1. Introduction

This paper considers the problems of the optimization of gravity flow dis-

charge chute profiles in bulk granular materials handling installations. Figure

1(a) displays a principle scheme of such an installation. From the bin (1), the

granular material (2) moves by means of the feeder (3) into the loading chute

(4). At the exit of the chute, the material is delivered to the conveyor (5)

(note that some other storage device can be this component of the system).

A granular material flows along a chute under the action of its own weight

and that is why in the literature such chutes are called gravity flow discharge

chutes. In chute profile optimization the most common optimization crite-

ria are the minimization of the transit time of granular materials and the

minimization of the losses of mechanical energy of granular materials due to

the friction. The last criterion is often expressed as maximization of the exit

velocity of the granular material. For the other optimization criteria for this

type of installation see [1, 2].

Figure 1

In the reference [3] it was shown that in case when a material flows

through a chute in the form of fast flow, the flow of material through the

chute can be modelled as a particle M moving down a curve with tangen-

tially directed resisting forces (see Fig. 1(b)). The curve is treated as an

unilateral constraint because the open chutes are considered. This means

that the particle must slide along the curve like a block on an inclined plane.

The shape of this curve should be such that the particle M starting from

the position M0(x0, y0) with the initial speed V0 reaches the position O(0, 0)
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either for the minimal time or the maximal speed (minimal losses of mechan-

ical energy). In Fig. 1(b), y represents the vertical axis directed downwards,

and x is the horizontal axis of a Cartesian coordinate system.

In the reference [4] considerations of the problem of maximum exit ve-

locity of granular material under the speed dependent resisting forces do not

take into account the fast flow condition and the condition that the particle

does not leave the chute. Consequently, the results obtained in [4] refer to

those values of the model’s parameters that ensure the satisfaction of the

previous conditions without their explicit incorporation in the equations of

the problem. A similar problem, without connection with the problem of

optimization of discharge chutes, was considered in [5]. The solution for the

problem of maximum exit velocity under the Coulomb friction force as well

as a review of literature relating to this problem is given in [6].

In this paper, using the optimal control theory [7, 8], the problem of

maximization of exit velocity is solved by directly introducing the fast flow

condition and the condition of non-leaving the chute bottom. To the best of

the authors’ knowledge, solving the considered problem by using these two

conditions has not been reported elsewhere before. These conditions, consid-

ering the model of a particle used, are represented by equivalent conditions

that the particle tangential acceleration is larger or equal to zero and that

during motion the reaction of the chute does not change the direction. The

resisting force that depends on the particle velocity is considered. The nu-

merical procedure for solving the problem is based on the shooting method

[9]. The determination of optimal chute profiles is illustrated via examples.

The obtained chute profiles are compared with those existing in literature.
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2. Optimal control formulation

The differential equation of motion of the particle M shown in Fig. 1(b)

reads:

m−→a = m−→g +
−→
N +

−→
F w. (1)

where −→a is the acceleration of the particle, −→g = g
−→
j , g is the acceleration

of gravity,
−→
N is the normal component of the constraint reaction force, and

−→
F W is the resisting force.

Let us introduce the unit vectors −→τ and −→σ in the following way [10] (see

Fig. 1(b)):

−→τ = (cosϕ)
−→
i + (sinϕ)

−→
j , (2)

−→σ =
d−→τ

dϕ
= (− sinϕ)

−→
i + (cosϕ)

−→
j , (3)

where
−→
i and

−→
j are the unit vectors of axes x and y, respectively, and −→τ

and ϕ are the unit vector and the slope angle of the tangent to the particle

path, respectively. It is obvious that −→τ · −→σ = 0. The reason to introduce

vector −→σ is that the unit vector −→σ , in contrast to the principal normal unit

vector of the particle path, does not change the orientation with changing of

the concavity of the curve and it is constantly directed to the same side with

−→g (see Fig. 1(b)). Now, the acceleration −→a can be written as (see [10])

−→a = V̇−→τ + V ϕ̇−→σ (4)
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where an overdot denotes the derivative with respect to time t and V rep-

resents the projection of the particle velocity on the direction −→τ . Also, in

regard to Fig.1(b), the following kinematics relations hold:

ẋ = V cosϕ, ẏ = V sinϕ. (5)

In further considerations it is assumed that the force
−→
F W has the following

form:

−→
F W = −mR(V )−→τ (6)

where R(V ) is the resisting force per unit mass of the form

R(V ) = βV k. (7)

In Eq.(7), β denotes the friction coefficient in dimension m1−k/s2−k and k ∈

R. In regard to above, projecting (1) on the directions −→τ and −→σ yields

V̇ = g sinϕ− βV k , (8)

mV ϕ̇ = mg cosϕ+Nσ, (9)

where Nσ =
−→
N · −→σ . In accordance to the lumped particle model used, the

condition that the particle does not leave the curve can be expressed in the

form

Nσ ≤ 0, (10)
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and the condition that the flow of a granular material through the discharge

chute is fast [3] can be expressed through the following equivalent condition

imposed to the particle tangential acceleration:

V̇ ≥ 0. (11)

In order to formulate a optimal control task, let us introduce a new vari-

able p and a control variable u as in [11]:

p , tanϕ , u ,
dp

dx
. (12)

Now, in accordance to (5), (8), (12) and taking the quantities y, p, and V as

states, the following state equations can be formed:

dy

dx
= p, (13)

dp

dx
= u, (14)

dV

dx
, fV (p, V ) =

gp− βV k
√

1 + p2

V
, (15)

with the prescribed initial and terminal conditions

x = 0 : y(0) = 0 , V (0) = V0 ; x = xf : y(xf) = yf . (16)

Now, from Eq. (9) it follows that

Nσ =
muV 2

(1 + p2)3/2
−

mg
√

1 + p2
. (17)

6
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Further, since

V̇ =
dV

dx

V
√

1 + p2
(18)

and since it is in the nature of the problem posed that V ≥ 0, then the

condition (11) is equivalent to the condition

dV

dx
≥ 0. (19)

Now, based on (15) and (17), the inequalities (10) and (19) take the following

form:

C1(p, V, u) ,
uV 2

(1 + p2)3/2
−

g
√

1 + p2
≤ 0, (20)

S(p, V ) , −gp+ βV k
√

1 + p2 ≤ 0. (21)

Let E = T + Π be the total mechanical energy of the particle, where

T = (1/2)mV 2 and Π = −mgy are the kinetic and potential energies of the

particle, respectively. From the principle of work and energy for the particle

one has

E(x0)− E(xf )

m
=

∫ xf

0

βV k
√

1 + p2dx. (22)

In regard to above, the posed problem consists in finding the control u = u(x)

and state variables y = y(x), p = p(x), and V = V (x) that minimize the

functional

J =

∫ xf

0

βV k
√

1 + p2dx (23)
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subject to the constraints (16), (20), (21).

3. Determination of the structure of the optimum chute profile

To determine the structure of the optimum chute profile, the same idea

as in [4, 12] will be used. Namely, the problem is solved first provided that

the constraints (20) and (21) are ignored temporarily. If an obtained solution

satisfies these constraints then the same solution is valid for the case with the

constraints (20) and (21) included. In this manner, initially, the chute profile

is obtained representing a singular control of the first order [13]. Indeed,

after the Hamiltonian [8]

H = βV k
√

1 + p2 + λyp+ λpu+ λV
gp− βV k

√

1 + p2

V
(24)

was formed, where λy, λp, and λV are the costate variables, the following

costate equations are obtained:

dλy

dx
, −

∂H

∂y
= 0 → λy(x) = Const, (25)

dλp

dx
, −

∂H

∂p
= −

βV kp
√

1 + p2
− λy − λV

g
√

1 + p2 − pβV k

V
√

1 + p2
, (26)

dλV

dx
, −

∂H

∂V
= −

k
√

1 + p2βV k

V
+ λV

gp+ (k − 1)
√

1 + p2βV k

V 2
, (27)

with the transversality conditions [8]:

λp(0) = 0, λV (xf) = 0, λp(xf ) = 0. (28)

8
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Since the control u appears linearly in the Hamiltonian H , the differen-

tiation of the Hamiltonian H with respect to x is performed as long as the

control u appears explicitly [8, 13]. After that, one obtains:

∂H

∂u
= λp(x) ≡ 0 , (29)

d

dx

∂H

∂u
= −

βV kp
√

1 + p2
− λy − λV

g
√

1 + p2 − pβV k

V
√

1 + p2
≡ 0. (30)

The singular control using is determined by differentiating (30) with respect

to x:

using =
gk(1 + p2)

V 2
. (31)

The control (31) represents the first-order singular optimal control [13]

for which Kelley’s optimality condition [13] :

K , (−1)n
∂

∂u

(

d2

dx2

[

∂H

∂u

])

≥ 0, n = 1 (32)

has to be satisfied with n ∈ N denoting the order of the singular optimal

control. In a developed form, the condition (32) reads

K =
βV k(V − λV )

V (1 + p2)3/2
≥ 0. (33)

Substituting (31) into (17) gives:

Nσ =
mg(k − 1)
√

1 + p2
. (34)

On the other hand, for a subarc on the boundary S = 0, from Eq. (15)

it follows that

9
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V (x) = Const. (35)

Also, based on (14) and (35), differentiating equality constraint S(p, V ) = 0

with respect to x yields

u

(

−g +
βV kp
√

1 + p2

)

= 0. (36)

After incorporating S = 0 in the last relation, one obtains

S(1) , u

(

−
g

1 + p2

)

= 0 (37)

from which it is obvious that

u = 0. (38)

Substituting (38) into (14) gives

p(x) = Const. (39)

which means that a subarc lying on the boundary S = 0 represents a straight

line. Now, substituting (38) in (17) yields

Nσ = −
mg

√

1 + p2
. (40)

According to (40), along this constrained subarc, the constraint (20) is sat-

isfied with strict inequality. Finally, for the constrained subarc Nσ = 0, the

optimal control is obtained from the relation C1(p, V, u) = 0 and reads:

u =
g(1 + p2)

V 2
. (41)

10
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If the singular extremal satisfies the inequalities (20) and (21), the prob-

lem is solved. If any of these inequalities is disturbed on some subintervals,

it is convenient that on these subintervals the extremal lies either on the

boundary S = 0 or C1 = 0. Based on (34), for k < 1 along a singular arc the

inequality (20) is satisfied, however, on the other side, it may happen that

the inequality (21) is disturbed. Considering this fact, for k < 1 the optimum

shape of the chute profile is a combination of a singular arc and the arc lying

on the boundary S = 0. Based on the graph of the curve S(p(x), V (x)),

where the functions p(x) and V (x) are determined for u(x) = using, it can

be estimated on which sections of a singular extremal the condition (21) is

disturbed. Specially, for constant friction (k = 0) , it is obvious that (34)

is reduced to (40) and, consequently, the optimal chute profile represents

a straight line. On the other hand, if k takes the value k = 1, the singu-

lar extremal lies on the boundary C1 = 0. In this case, it should be checked

whether the condition (21) is disturbed on any section of a singular extremal.

If it is not the case, then a singular extremal is a solution to the problem,

and if it is, a procedure similar as in the case k < 1 is applied. Finally, if

k > 1, then the condition (20) is disturbed on a singular extremal because,

based on (34), Nσ > 0 holds. In regard to this, for k > 1, a singular extremal

can not be a section of the optimal chute profile. In this case, the highest

value of exit velocity would be achieved if the entire chute profile represents

the constrained arc Nσ = 0. At the same time, it should be checked again

for the possible disturbance of the condition (21) along this arc.

11
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4. Numerical examples

4.1. The case k = 0.5

For xf = yf = 1m , k = 0.5 , β = 0.25m1/2/s3/2, solving Cauchy’s

problem of the state equations with the condition y(xf) = yf , p(xf ) = pf ,

and V (xf ) = Vf yields the following relations in numerical form:

y0 = f1(pf , Vf), V0 = f2(pf , Vf). (42)

Using various values of the speed V0 and numerical solving the nonlinear

system (42) yields the values of the parameters Vf and pf , which are shown

in Table 1. The values of λy are calculated applying the relation (30) at the

point x = xf . Based on these data, in Figs. 2 and 3 the chute profiles and the

the curves S(p(x), V (x)) are shown, respectively. Note that an arrow with

designation V0 indicates how chute profiles distribute in figures with growing

value of V0.

Table 1

Figure 2

Figure 3

Figure 4

The numerical confirmation of Kelley’s condition (33) is presented in Fig.

4. From Fig. 3 it is obvious that as the value of velocity V0 is reduced, the

value S(p0, V0) tends to zero, where p0 = p(0). For V0 = V0cr1 = 1.33689m/s,

one has that S(p0, V0) ≈ 0 as well as Vf = 4.49156m/s, pf = 1.63987, and

12
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λy = −0.452359m/s2. This means that with further reduction of initial

speed, the constraint (21)is disturbed at the initial section of a singular

arc. In regard to this, for V0 < V0cr1, the optimum chute profile begins

with the constrained arc u = 0 and ends with the singular arc using. To

determine the transversality conditions as well as the corner conditions at

a point 0 < x1 < xf where the constrained and singular subarcs join, the

approach from [7] will be used. Accordingly, the state equality constraint

S(p, V ) = 0 is equivalent to the control equality constraint (37) and the

point constraint

S(p0, V0) = 0. (43)

Now, an augmented performance index is introduced as (see [7])

J⋆ = νS(p0, V0)+

∫ x1

0

[

Ĥ − λy
dy

dx
− λp

dp

dx
− λV

dV

dx

]

dx+

∫ xf

x1

[

H − λy
dy

dx
− λp

dp

dx
− λV

dV

dx

]

dx

(44)

where ν is the constant Lagrange multiplier and Ĥ is the extended Hamilto-

nian [7] defined as

Ĥ = βV k
√

1 + p2 + λyp+ λpu+ µS(1) (45)

where µ(x) is the Lagrange multiplier. The stationarity condition △J⋆ =

0, where △(·) denotes the noncontemporaneous variation [7, 14, 15] of the

quantity (·), gives the following relations:

−
νg

1 + p20
+ λp(0) = 0, (46)

13
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H(x1 + 0) = Ĥ(x1 − 0), (47)

λV (xf ) = 0, λp(xf ) = 0, (48)

λp −
µg

1 + p2
= 0, 0 ≤ x ≤ x1, (49)

λy(x1 + 0) = λy(x1 − 0), λp(x1 + 0) = λp(x1 − 0), λV (x1 + 0) = λV (x1 − 0),

(50)

as well as costate equations on the interval [0, x1]:

dλy

dx
, −

∂Ĥ

∂y
= 0 → λy(x) = Const, (51)

dλp

dx
, −

∂Ĥ

∂p
= −

βV kp
√

1 + p2
− λy, (52)

dλV

dx
, −

∂Ĥ

∂V
= −

k
√

1 + p2βV k

V
(53)

where the relation (38) is included. For given V0, the quantity p0 can be

calculated from (43) as

p(x) ≡ p0 =
1

√

(

g
βV k

0

)2

− 1

. (54)

See [7, 14] for details of calculating △J⋆. Also, taking into account the fact

that state variables are continuous at x = x1, i.e.,

14
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y(x1+0) = y(x1−0) = p0x1, p(x1+0) = p(x1−0) = p0, V (x1+0) = V (x1−0) = V0,

(55)

as well as Eqs. (29), (38), and (50), it is easy to show that the relation (47)

is identically satisfied.

Further, based on previous relations, solving the costate equations (52)

and (53) yields:

λp(x) =

(

βV k
0 p0

√

1 + p20
+ λy

)

(x1 − x) , (56)

λV (x) =
k
√

1 + p20βV
k
0

V0

(x1 − x)−

(

λy +
βV k

0 p0
√

1 + p20

)

V0 (1 + p20)

g
. (57)

Based on these relations, the relations for ν and µ(x) can be obtained from

(46) and (49). The value x1 is determined in accordance to the follow-

ing numerical procedure. Namely, applying the Runge-Kutta method one

solves in the interval [xf , x1] Cauchy’s problem of the state equations (13)-

(15) with the singular control determined by (31) and the initial conditions

y(xf) = yf , p(xf ) = pf , V (xf) = Vf . After that, the numerical dependencies

y(x1) = f3(x1, Vf , pf ), p(x1) = f4(x1, Vf , pf ), and V (x1) = f5(x1, Vf , pf )

are established. Further, taking (55), the following nonlinear system of equa-

tions are obtained:

p0x1 = f3(x1, Vf , pf), p0 = f4(x1, Vf , pf),

V0 = f5(x1, Vf , pf ). (58)

15
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For xf = yf = 1m , k = 0.5 , β = 0.25m1/2/s3/2, and various values of the

speed V0 < V0cr1, by numerically solving the equation system (58), the values

of the parameters x1, pf , and Vf are obtained. These values are shown in

Table 2, where ϕ0 = arctan p0. The values of λy are calculated applying the

relation (30) at the point x = xf . Based on these data , the chute profiles

and the numerical confirmation of Kelley’s condition (33) are shown in Figs.

5 and 6, respectively. From Fig.5 and Table 2 it can be observed that the

initial parts of optimum chute profiles have almost the form of a horizontal

straight line.

Table 2

Figure 5

Figure 6

4.2. The case k = 2

In accordance with the conclusions presented in the last paragraph of

Section 3, this case is initially solved assuming that the entire chute profile

represents an arc along which Nσ = 0. Following the approach from [7], this

can be treated as the problem of minimization of the functional (23) subject

to the constraint (16) and the control equality constraint C1(p, V, u) = 0.

After introducing the following augmented performance index

J⋆ =

∫ xf

0

[

Ĥ − λy
dy

dx
− λp

dp

dx
− λV

dV

dx

]

dx (59)

where

16
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Ĥ = βV k
√

1 + p2 + λyp+ λpu+ λV fV + µC1, (60)

the stationarity condition △J⋆ = 0 gives the costate equations:

dλy

dx
, −

∂Ĥ

∂y
= 0 → λy(x) = Const, (61)

dλp

dx
, −

∂Ĥ

∂p
= −

βV kp
√

1 + p2
− λy − λV

g
√

1 + p2 − pβV k

V
√

1 + p2
− µ

∂C1

∂p
, (62)

dλV

dx
, −

∂Ĥ

∂V
= −

k
√

1 + p2βV k

V
+ λV

gp+ (k − 1)
√

1 + p2βV k

V 2
− µ

∂C1

∂V
,

(63)

the transversality conditions (28) as well as

λp +
µV 2

(1 + p2)3/2
= 0. (64)

The state equations (13)-(15) and the costate equations (62) and (63) are

integrated in the interval [0, xf ] with the control u determined by (41). The

following initial conditions y(xf) = yf , p(xf ) = pf , V (xf ) = Vf , λp(xf) =

λV (xf) = 0, and the following values of parameters xxf
= yxf

= 1m , k = 2

, β = 0.25m−1 are used. After that, a nonlinear system of equations are

obtained:

y0 = 0 = f6(pf , Vf , λy), V0 = f7(pf , Vf , λy),

λp(0) = 0 = f8(pf , Vf , λy). (65)

17
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Using various values of the speed V0, by numerically solving the system

of equations (65), the values of the parameters Vf , pf , and λy are obtained

and presented in Table 3. Based on these data, in Figs. 7 and 8, the chute

profiles and the curves S(p(x), V (x)) are shown, respectively.

Table 3

Figure 7

Figure 8

It is noticeable from Fig. 8 that the reduction of V0 implies that the

value S(p0, V0) approaches to zero. For V0 = V0cr2 = 2.81846m/s one has

that S(p0, V0) ≈ 0 as well as pf = 2.01042, Vf = 4.30058m/s, and λy =

−4.63171m/s2. This means that for V0 < V0cr2, the optimum chute profile

begins with the constrained arc u = 0 and ends with the constrained arcNσ =

0. Similarly as in Sections 4.1, following approach from [7], the state equality

constraint S(p, V ) = 0 is replaced with the control equality constraint (37)

and the point constraint (43). Also, the augmented performance index J⋆

reads

J⋆ = νS(p0, V0)+

∫ x1

0

[

Ĥ1 − λy
dy

dx
− λp

dp

dx
− λV

dV

dx

]

dx+

∫ xf

x1

[

Ĥ − λy
dy

dx
− λp

dp

dx
− λV

dV

dx

]

dx

(66)

where the extended Hamiltonian Ĥ1 is given by:

Ĥ1 = βV k
√

1 + p2 + λyp+ λpu+ µ1S
(1), (67)
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and where µ1(x) is the Lagrange multipliers. Taking previous into account,

from the stationarity condition △J⋆ = 0 it follows that

−
νg

1 + p20
+ λp(0) = 0, (68)

Ĥ(x1 + 0) = Ĥ1(x1 − 0), (69)

λp −
µ1g

1 + p2
= 0, 0 ≤ x ≤ x1, λp +

µV 2

(1 + p2)3/2
= 0, x1 ≤ x ≤ xf , (70)

the costate equations (51)-(53) on the interval [0, x1], the costate equations

(61)-(63) valid on the interval [x1, xf ], the last two transversality conditions

from (28) as well as the relations (50), (54), and (55). Using (50) and (55),

the condition (69) yields

λp(x1) = 0. (71)

Now, applying the similar procedure on the interval [x1, xf ] like for ob-

taining the system of equations (65), the following nonlinear system of equa-

tions are obtained:

p0x1 = f9(pf , Vf , λy, x1), V0 = f10(pf , Vf , λy, x1),

1
√

(

g
βV k

0

)2

− 1

= f11(pf , Vf , λy, x1), λp(x1) = 0 = f12(pf , Vf , x1, λy).

(72)
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Using various values of the speed V0, by numerically solving the system of

equations (72), the values of the parameters Vf , pf , x1, and λy are obtained

and presented in Table 4. The chute profiles corresponding to these values

are shown in Fig. 9. At the end, using similar procedure as in Sect. 4.1, the

expressions for λp(x) and λV (x) on the interval [x1, x0] can be calculated.

After that, the parameter ν is determined from (68). From Fig.9 and Table

4 it can be observed that decreasing of the value of V0 is accompanied by the

angle ϕ0 approaches to zero value, i.e., the initial parts of optimum chute

profiles take the form of almost a horizontal straight line.

Table 4

Figure 9

5. Conclusions

Using the optimal control theory, the optimum chute profiles that ensure

the maximum exit velocity of granular material were obtained in this paper.

It has been shown that the fast flow condition and the condition of non-

leaving the chute bottom require that, in a general case, the chute profile be

a two-segment curve. For values of initial speed larger than the correspond-

ing critical values, the chute profile has the shape of a single-segment curve

along which both conditions (20) and (21) are satisfied. It should be pointed

out that in [4], the constraints (20) and (21) were not considered and that

the considerations were restricted to the those values of parameters V0, k,

and β that enable the fulfilment of these conditions in a natural way. In

regard to this, the results obtained in this paper represent generalization of
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considerations and results reported in [4]. Note that the chosen control vari-

able as well as the state variables enable to avoid the shooting of the costate

λp and λV in the numerical procedure for solving the problem. This is of

great importance because the costate variables, in principle, do not have a

definite physical meaning and consequently it is not easy to guess beforehand

the range of their values. Theoretical considerations presented in the paper

also form a basis for considering the problem of minimization of the transit

time of granular materials through discharge chutes. It is of importance to

emphasize this in light of the fact that, to the best authors’ knowledge, such

kind of the problem of minimum time with the constraints (20) and (21) has

not been previously considered in the literature.
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Table 1: Numerical values of the parameters of chute profiles for k = 0.5 and V0 > V0cr1

V0 [m/s] pf Vf [m/s] λy [m/s2]

3.0 1.27773 5.2133 -0.449514

2.0 1.42094 4.72298 -0.444311

1.5 1.55444 4.54063 -0.448018
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(a) (b)

Figure 1: (a) Gravity flow discharge chute; (b) The physical model of the chute
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Table 2: Numerical values of the parameters of chute profiles for k = 0.5 and V0 < V0cr1

V0 [m/s] pf ϕ0 [
o] x1 [m] Vf [m/s] λy [m/s2]

1.1 1.8529 1.5 0.137616 4.43022 -0.463067

0.8 2.24345 1.3 0.314276 4.37042 -0.477363

0.5 2.93274 1.0 0.498437 4.33199 -0.492493

Table 3: Numerical values of the parameters of chute profiles for k = 2 and V0 > V0cr2

V0 [m/s] pf Vf [m/s] λy [m/s2]

3.5 1.74119 4.52688 -4.95527

3.2 1.84049 4.42143 -4.79612

3.0 1.92157 4.35608 -4.70367

Table 4: Numerical values of the parameters of chute profiles for k = 2 and V0 < V0cr2

V0 [m/s] pf ϕ0 [
o] x1 [m] Vf [m/s] λy [m/s2]

2.0 2.67575 5.8 0.218298 4.09846 -4.2709

1.5 3.4837 3.3 0.389107 4.01538 -4.09945

1.0 5.13617 1.5 0.580008 3.96245 -3.96996
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Figure 2: Optimum chute profiles corresponding to k = 0.5 and V0 > V0cr1
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Figure 3: Graphs of the curve S(p(x), V (x)) corresponding to k = 0.5 and V0 > V0cr1
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Figure 4: Numerical confirmation of Kelley’s condition in the case of k = 0.5 and V0 >

V0cr1
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Figure 5: Optimum chute profiles corresponding to k = 0.5 and V0 < V0cr1
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Figure 6: Numerical confirmation of Kelley’s condition in the case of k = 0.5 and V0 <

V0cr1
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Figure 7: Optimum chute profiles corresponding to k = 2 and V0 > V0cr2
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Figure 8: Graphs of the curve S(p(x), V (x)) corresponding to k = 2 and V0 > V0cr2
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Figure 9: Optimum chute profiles corresponding to k = 2 and V0 < V0cr2
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