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Abstract. Nano-materials such as graphene sheets have a great opportunity to be applied in development of a new
generation of nanomechanical sensors and devices due to their unique physical properties. Based on the nonlocal
continuum theory and vibration analysis, the single-layered graphene sheet with attached nanoparticles affected by
in-plane magnetic field is proposed as a new type of the mass-nanosensor. The nonlocal Kirchhoff - Love plate
theory is adopted to describe mechanical behavior of single-layered graphene sheet as an orthotropic nanoplate.
The equation of motion of a simply supported orthotropic nanoplate is derived, where the influence of Lorentz
magnetic force is introduced through classical Maxwell equations. Complex natural frequencies, damped frequency
shifts and relative shift of damping ratio for nanoplate with attached nanoparticles are obtained in the explicit form.
The influences of the nonlocal and magnetic field parameter, different mass weights and positions of attached
nanoparticles and damping coefficients on the relative damped frequency shift and relative shift of damping ratio
are examined. The presented results can be useful in the analysis and design of nanosensors applied in the presence
of strong magnetic field. Our results show that magnetic field could be successfully used to improve sensibility
performances of nanomechanical sensors.

Key words: Nonlocal elasticity theory; mass-nanosensor; in-plane magnetic field; damped natural frequency;
damped frequency shift.

1. Introduction

Recent developments of nanomechanical sensors cause an increase of a number of theoretical studies
constructing the mathematical framework to investigate their dynamic behavior and performances. This can be
especially important in predesign procedures of mass-sensor devices. In the literature, one can find many examples
of application of nanomechanical sensors for calorimetric gas detection, drug screening, genetics, proteomics,
glycemic, microbiology, metabolic measurements and other applications in chemical, environmental and biological
detection [1, 2]. In some of the works, graphene sheet nanostructures are suggested for nanosensor application
where one of the advantages compared to the CNT based sensors is the larger surface for catching the particles. In
the follow, we give a short review of scientific works where molecular dynamics and nonlocal continuum methods
are applied to examine mass-nanosensors. In the work by Sakhaee-Pour et al. [3], the authors have investigated the
application of single-layer graphene sheet as strain sensor by using the molecular structural mechanics approach.
For the first time, a closed-form equation for the frequency shift caused by added mass on carbon nanotube sensor
was derived in Chowdhury at el. [4] using the energy principles. The authors also investigated the linear
approximation of the nonlinear sensor equation and validated the results for a wide range of cases. Adhikari and
Chowdhury [5] derived closed-form transcendental equations for the frequency shift from added point and
distributed mass by using the energy principles. In addition, the authors calculated the calibration constants
proposed in order to obtain explicit relations between the added mass and frequency shift. Further, in [6] the same
authors proposed a single-layer graphene sheet as mass sensor. By developing the appropriate mathematical
framework, they considered four types of distributed mass loadings, obtained explicit relations between frequency
shift and added mass as well as for non-dimensional calibration constants. The obtained results are validated with
molecular dynamics simulation. In the previously described papers, classical continuum or molecular dynamics
models are used to describe the dynamic behavior of nanostructures.
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It is well known that better results in describing the dynamics behavior of nanostructures can be achieved
by using the nonlocal continuum models based on nonlocal theory of Eringen [7, 8]. Such models are widely used in
the literature to describe various dynamics and stability behaviors of nanorods, nanobeams, nanoplates and shell-
like nanostructures [9-19]. By taking into account size-dependent nonlocal parameter into a nonlocal constitutive
relation, we consider nonlocal inter-atomic forces that cannot be neglected at nano-scale level. Thus, when using the
nonlocal models, obtained frequencies and frequency shifts due to an added mass for nanosensing application
should be more accurate. The value of nonlocal parameter is usually obtained by fitting the results from molecular
dynamics simulation where typical values for nanobeams and nanoplates can be found in the literature. Murmu and
Adhikari [20] proposed a nonlocal elasticity modeling approach for CNT based cantilever mass-sensor. They
obtained explicit equations for calibration constants and frequency shifts by adding point and distributed masses.
They also validated the obtained results with the results from molecular dynamics simulation. On the example of
multiple strands of deoxythimidine attached on CNT, they showed the advantage of nonlocal elasticity approach
comparing to the local one. Recently, in [21] the same authors suggest single-layer graphene sheet (SLGS) as nano-
scale mass sensor where graphene is modeled as an isotropic nanoplate by using the nonlocal elasticity theory. In
this case, they also obtained closed-form expressions for the frequency shifts caused by attached masses as well as
for calibration constants by applying the energy principles. From numerical results they reviled that the sensitivity
of nanosensors is in the order of gigahertz i.e. zeptogram. Shen et al. [22] applied nonlocal Kirchhoff plate theory to
model nanomechanical sensor based on SLGS. The authors obtained natural frequencies using the Galerkin method
and investigated the frequency shifts and nanosensor performances for different locations of attached masses and
changes of the nanoplate dimensions. Vibration of CNT mass-sensors incorporating the thermal and nonlocal effects
was investigated by Wang and Wang [23]. In addition, Fazalzadeh and Ghavanloo [24] examined the vibration of
SLGS for mass sensing application also incorporating the nonlocal and thermal effects. Kiani [25] studied the specific
and interesting problem of vibration of single-walled carbon nanotube (SWCNT) under the influence of axial
magnetic field used for mass sensing application. The author obtained explicit expressions for the frequency shift of
magnetically affected SWCNTS caused by addition of nanoparticles. In [46, 48-50] the same author analyzed the
vibration behaviors of single/double-walled carbon nanotubes and graphene sheet subjected to the magnetic field in
different directions with respect to these nanostructures.

Nonlocal damped vibrations of various nanostructures are investigated successfully in the literature by
using different nonlocal viscoelastic constitutive relations [26-30]. The main property of systems with damping is
dissipation of a total mechanical energy of the system. Moreover, studying the sources of damping is a crucial point
in the analysis of a dynamical behavior of nano-electromechanical systems (NEMS) such as nanoresonators,
nanoactuators and also bio/mass sensors etc. [31]. By searching the literature, one can notice that the earlier
authors have defined two types of damping sources in dynamical systems: I) external damping from the influence of
the surrounding media [27] and II) internal damping or the so-called material damping which comes from
constitutive relations [29, 30]. Croy et al. [32], proposed graphene based nanoresonators with nonlinear damping
effects using the continuum mechanical model. The authors have found that the coupling between flexural modes
and in-plane phonons leads to to linear and nonlinear damping for out of-plane vibration. Further, Eichler et al. [33]
studied damping effects in mechanical resonators based on carbon nanomaterials such a graphene sheets and
carbon nanotubes. They showed the influence of different values of damping coefficient on the dynamical behavior
of mechanical nanoresonators, where damping strongly depends on the amplitude of motion that was described by
the nonlinear damping force. Karli¢i¢ et al. [34] investigated the free damped vibration of the system of multiple
graphene sheets embedded in viscoelastic medium. They obtained closed form solutions for complex natural
frequencies and found asymptotical values of natural frequencies and damping ratios of such a system. Alibeigloo
[51] employed nonlocal and three-dimensional elasticity theory to examine the vibration properties of nanoplate.
The author examined the effects of non-local parameter, aspect ratio, thickness-to-length ratio and half-wave
numbers on the frequency behavior. It was found that length-to-thickness ratio significantly influences the vibration
behavior of graphene i.e. the frequency increases significantly for ratio in the range 5-20 and for higher aspect ratios
these changes are minimal. Further, the author revealed that nonlocal parameter is almost independent of the
length-to-thickness ratio.

Besides previously mentioned models of single layer graphene sheets (SLGS) based on molecular structural
mechanics approach or continuum theory, in the literature one can find other approaches based on molecular
dynamics that accounts for the effects depending on anisotropy and chirality of graphene. Liu et al. [52] investigated
the buckling behavior of graphene under compression strain. The authors have found that different buckling
behaviors can be expected for different width-to-length aspect ratios and chirality of graphene. Further, the authors
linked sudden changes of buckling behavior for certain ranges of aspect ratio to the presence of edge effects in
graphene. In the end, they came to the conclusion that after certain value of aspect ratio all mentioned non-
continuum effect can be neglected. In [53], Liu et al. analyzed the transverse wave propagation in single-layer
graphene sheet using molecular dynamics simulation and continuum analysis. The authors found that there is an



upper limit of the excitation frequency under which wave propagation is distorted. In addition, they have shown that
for certain frequency range transverse wave propagation in graphene significantly depends on chirality.

In spite of many published results in the field of damped vibration of nanostructures and nanomechanical
sensors, there are no studies analyzing the damping effect on resonant frequencies of graphene based nanosensors
affected by magnetic field. In this paper, we present a novel theoretical approach to examine the properties of mass-
nanosensors based on SLGS by using the nonlocal plate theory, considering the internal damping and external
damping from viscoelastic medium and taking into account the effect of in-plane magnetic field. Motion equations of
the system are derived applying the Lorentz force and Maxwell equations for the magnetic field. Closed-form
solutions for relative damped frequency shifts and relative damped ratio shifts due to added masses are obtained.
Performances of the mass-nanosensor are investigated for different positions of masses, mass weights and changes
of magnetic field and viscoelastic parameters. Since the effect of thickness-to-length ratio play an important role in
the mechanical behavior of graphene sheets, we also examined its influence on mass-nanosensor. We have shown
that this parameter can be very important in a selection of optimal dimension of graphene sheet to achieve the best
sensitivity of nanosensor device. In addition, our results illustrate that the presence of magnetic field could
successfully improve the sensibility performances of nanomechanical sensors.

2. Nonlocal model of graphene bio-sensor

In this study, we proposed Kirchhoff - Love theory for orthotropic nanoplate to describe mechanical
behavior of single-layered graphene sheet Fig. 1 a) with attached nanoparticles such as viruses or biomolecules,
based on the nonlocal viscoelastic constitutive relation. Further, it is assumed that some types of viruses and
biomolecules or nanoparticles can be modeled as mass points because of their small dimensions compared to the
dimension of a nanoplate. This implies that we can ignore influence of the rotational inertia of attached
nanoparticles as proposed in the literature [4, 6, 20, and 21].

It should be noted that we assume that attached nanoparticles are perfectly rigidly attached to the
nanoplate without considering van der Walls interaction forces. This leads to the fact that there is no separation of
nanoparticles from the graphene sheet during motion. Moreover, there is no additional interaction among attached
nanoparticles since the distance is large enough and in the literature [4-6, 23-25, 43]. In [4-6, 21], it is found that the
results obtained by nonlocal continuum mechanics approach and molecular dynamic simulation are in good
agreement. In these works, the influences of transversal displacements of nanoparticles and van der Waals forces
between nanoparticles and graphene sheet have been neglected.

Consider the continuum mechanical model (see Fig. 1 b)) of such mass-nanosensors is represented by an
orthotropic nanoplate with the following material properties: elastic modulus E; and E,, Poison coefficients 9J;,
and ¥,,, shear modulus G;,, internal damping parameter t;, mass density p, length a, width b and thickness h.
Further, we assume that the orthotropic nanoplate is resting on the viscoelastic medium, which is modeled with
continuously distributed pairs of springs and dampers, also known as Kelvin-Voigt model, where stiffness
coefficients is denoted with k and damping coefficients with b. Also, we consider that a nanoplate is under the
influence of in-plane magnetic field along direction of O-x axes. The x- coordinate is taken along the length of the
nanoplate, the y- coordinate along the width of the nanoplate and the z-coordinate is along the thickness of the
nanoplate. It should be noted that the flexural vibration of the nanoplate in the thickness direction and transversal
displacements are denoted by w(x, y, t).
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Fig. 1 Single-layered graphene sheet as mass-nanosensors with attached nanoparticles:
a) Physical model and b) Mechanical model.

2.1 Constitutive relations

Now, we will consider the basic equation of nonlocal elasticity and viscoelasticity in the general and two-
dimensional case. Eringen and Edelen [7] derived a constitutive relation for nonlocal stress tensor at a point x in an
integral form based on the assumption that the stress at a point is a function of the strains at all points of elastic
body. Fundamental form of the nonlocal elastic constitutive relation for a three-dimensional linear, homogeneous
isotropic body is expressed as

0, (%) = f a(lx — x|, D) Cymen )V (x), Va € V, (1a)
o—ij,j = O, (1b)

1
&j =5 (usj + u50), (19

where C;jy,; is the elastic modulus tensor for classical isotropic elasticity; o;; and ¢;; are the stress and the strain
tensors, respectively, and u; is the displacement vector. With a(|x — x'|,7) we denote the nonlocal modulus or
attenuation function, which incorporates nonlocal effects into the constitutive equation at a reference point x
produced by the local strain at a source x'. The above absolute value of the difference |x — x’| denotes the Euclidean
metric. The parameter 7 is equal to T = (ey@)/l where [ is the external characteristic length (crack length, wave
length), d@ describes the internal characteristic length (granular size, distance between C-C bounds, lattice
parameter) and e, is a constant appropriate to each material that can be identified from atomistic simulations or by
using the dispersive curve of the Born-Karman model of lattice dynamics.

Because of difficulties arising in the analytical analysis of continuum systems due to the integral form of
nonlocal constitutive equations, Eringen [8] has reformulated them into a differential form. Such form of nonlocal
constitutive equations is proved to be very efficient, simple, and convenient for analytical techniques of solving the
problems in vibration analysis of nanostructured systems. The differential form of the nonlocal constitutive relation
is

(1= uv¥o;; =ty (2)

9% | 9% . . R . .
where V2= 2t 7 is the Laplacian; u = (ey@)? is the nonlocal parameter; and tij = Cijri&r is the classical stress

tensor. From Eq. (2), the constitutive relations for homogeneous elastic nanoplates can be expressed as
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where E, G and 9 are the Young’s modulus, shear modulus and Poisson’s ratio, respectively.

The nonlocal viscoelastic constitutive relation for Kelvin-Voigt viscoelastic nanoplate proposed by Pouresmaeeli
et al. [29] and Karlici¢ et al. [34] is a combination of nonlocal elasticity and viscoelasticity theory. For the case of two
- dimensional nonlocal viscoelastic orthotropic nanoplate, constitutive relation is given as

2 2 E
Ei(1+1q4 5) V2B (1 + 74 5) 0
o 1 =959, 1 =939, <
xx F] 3 XX
(1—puv? (%y) ={V2E2(0+1a5)  Ex(1+743) 0 <€yy>, 4
Txy 1 =919, 1 =919, Vxy
d
0 0 G,(1 —
] 12(1+74 at)—



where 7, is the internal damping coefficient of nanoplate, E; , E, and 9,,, 9, are Young’s modulus’s and Poisson’s
ratios of orthotropic nanoplate. By neglecting the internal viscosity i.e. for 7, = 0, we then obtain the constitutive
relation of nonlocal elasticity. In the follow, we use the constitutive relation for nonlocal viscoelasticity in Eq. (4) to
derive governing equations of motion.

2.2 Classical Maxwell’s relation
On the basis of the classical Maxwell relation [35-42], the relationships between the current density],

distributing vector of magnetic field h, strength vectors of the electric fields e and magnetic field permeability n are
represented by Maxwell’s equations in differential form and can be retrieved as

dh
J]=V xh, Vxe=—ﬂa’ V-h=0, (5)
where vectors of distributing magnetic field h and the electric field e are defined as
ou
h=V x(UxH), e=_”<EXH)' (6)

In the above equation, V=;—xi+;—yi+%k is the Hamilton operator, U(x,y,z) =i, i+ v,j+w,k is the

displacement vector and H = (H,, 0,0) is the vector of the in-plane magnetic field. It is assumed that the in-plane
magnetic field acts on the orthotropic viscoelastic nanoplate in the x - direction. We can write the vector of the
distributing magnetic field in the following form

b= aﬁy+awz o H 617y_+ av_vzk ;
_xayazlxx] > o (7)

Introducing Eq. (7) to the first expressions of Eq. (5) one obtains

UsxheH 0%v,, N %, . u 0%v, X a%w, N a%w,\ . o H 0%v, N 0%v, N a%w, K (8
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Further, using Eq. (8) into the expressions for the Lorentz force induced by the in-plane uniaxial magnetic field,

yields
0%v, 0%*v, 0%*w 2*w, 0*w, 0°%v
— — s 2 y y Z\ . 2 z z y
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Here f,, f, and f; are the Lorentz forces along the x, y and z directions, respectively of the form

=0, (10a)
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In this study, we assume that the displacement of the orthotropic viscoelastic nanoplate w,(x, y, t) and the Lorentz
force acts only in z direction that can be written as

*w, 0*w, 0°*D,
=nH? z . 2.
fo=m "(axz * o2z VT ozay

Now, it is possible to obtain transverse Lorentz magnetic force [46-50], which acts on the orthotropic viscoelastic
nanoplate with the corresponding displacement field for Kirchhoff-Love plate theory given as

an

/2
. ,(0°w  9*w
1.0 = [ fdz=nni (55 -5%). (12)
~h/2
where the bending moments of that force are equal to zero M(x,y,t) = f_h}{/zz zf,dz = 0.



2.3 The nonlocal Kirchhoff - Love plate theory

The displacement field of the Kirchhoff-Love plate theory in x, y and z direction is given as

ow(x,y,t)
ax T dy

in which u, v and w are the displacements of orthotropic nanoplates in the x,y and z directions, respectively. For
given displacement field Eq. (13), the nonzero strain - displacement relations are
ou  9*w v 9*w ou dv *w

Tk o T oy 0 T oy T ax T P anay

ow(x,y, t) _
g

U =ulx,y,t) -z w, =w(x,y,t), 13)

(14)

where &, and ¢, are the normal strains, and y,, is the shear strain. According to the Newton’s second law,
equilibrium equations for infinitesimal element can be obtained as

30, 00, 92w

g+ +W=ph TER (15a)
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Tl g, (150
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where q is external load represented as a sum of attached masses, in-plane magnetic field and viscoelastic
foundation in the following form

- - , (Pw  0*w . a*w

q(x,y,t) = —kw — bw + nhHS Fr a_yz - Z ij(x - X,y — yj) e (16)
j=1

where m; is the mass of j — th attached nanoparticle and 6(x - X,y —yj) is the Dirac delta function in two-

dimensional case. The terms N,,, N,,, and N,, are the in-plane stress resultants M,, M,, and M,,, are the moment

resultants, and @, and (), are the transverse shearing resultants, which are defined as
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By substituting Egs. (15b) and (15c¢) into the Eq. (15a) and neglecting the in-plane displacements u and v, we obtain
the following partial differential equation of motion for the orthotropic nanoplate as

O Mex My )0 May _ 0 OW o B — iz (0 W) 4 ZS: s( ) oW g
axz oy axay Pz TV T OWTIMX\ 532 T 5y ,lmf X=%Y Vi) | Gz (18)
j:

Now, inserting the strain - displacement relations Eq. (14) into Eq. (4) and using Egs. (16) and (17), yields

d\ 0%w a9\ 9*w
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in which D4, Dy, D,, and D¢ are the bending rigidities of orthotropic viscoelastic nanoplates which are expressed
as

Eh3 9,,E,h? E,h3 Gyoh3

Dhy=——"——, Dp=-"—""—"—", Dyy=-"—" Deg=——
HT12(1 — 9159,7) 12712(1 — 915951) 271201 - 95,09,,) 0 % 12

(20)

The governing equation of motion of viscoelastic orthotropic nanoplate with attached masses in strong magnetic
field can be obtain in terms of transversal displacement by using Egs. (18-20), in the following form

*w . _ 62W 82 9%w
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and corresponding boundary condition for simply supported nanoplates defined as

w(x,0,t) =w(x,b,t) =0, w(0,y,t) =w(a,y,t) =0, (22a)
My (0,y,8) = Myx(a,y,t) =0, M, (x,0,t) =M,,(x,b,t) = 0. (22b)

From a physical point of view, this means that the deflections and moments at all four edges of nanoplates are equal
to zero.

3. Vibrational response of SLGS with attached nanoparticles

In order to obtain analytical solution for damped natural frequency, damping ratio and damped shift
frequency, we assume the solution of partial differential equation (21) with corresponding boundary conditions
(22) in the following form

© 00

w(x,y,t) = Z Z W, sin(a,x) sin( B,y) e¥n*  (r,n) = 1,2,3,.., o, (23)

r=1n=1

wherei =+v-1, a, =rm/a; B, =nn/b (r,n=123,..,0); W,, and Q,, are amplitudes and complex natural
frequencies, respectively. According to the paper presented by Karli¢i¢ et al. [34], the assumed displacement field
satisfies the given boundary conditions and it is independent of the influence of viscoelastic interaction. Introducing
assumed solution (23) into partial differential equation of motion (21), multiplying both sides of obtained equation
with mode shape function sin(a,-x) sin( $,y) and integrating over the whole domain yields the following quadratic
equation

—-0%,A+iQ,,B+C =0, (24a)
in which
s
A=Al|ph+ Z %sin2 (a,x;) sin?( Boy;) |, (24b)
j=1
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A=1+pu(al +B7), (24e)

are constants, where we use orthogonality condition and property of Dirac delta function in the form
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By solving the quadratic equation expressed in Eq. (24), we obtain complex natural frequency as
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where the term A,, denotes squared value of the natural frequency. It should be noted that the real part of the
complex natural frequency Eq. (26) represents the damped natural frequency w,,, while the imaginary part
represents the damping ratio v,.,, of the viscoelastic orthotropic nanoplate.

Now, we can obtain new form of damped natural frequency as

— 2
a)rn Arn an

Jn = 2 2t (28)

By using the expression (28), we obtain the new form of damped natural frequency without influence of added mass
of nanoparticles, magnetic field and external interaction from viscoelastic medium as

fo,rn =

1 (afDyy + Dy, + 2077 (Dy, + 2D66) Td(a’ Dy + BpDyy + 207 B (D + 2D66)) } 29)

2n Aph Aph

Finally we define damped frequency shift of the sensor in the following form



Afrn = fO,rn = frno (30)

and relative damped frequency shift as

Afrn orn frn
®,, = ——=—"—"T1 (31)
" fO,rn fO,rn

In similar manner we define relative shift of damping ratio as

Vorn — V.
N,, = orn  7rn (32a)

Vo,rn

where v ., is damped ratio without the influence of added masses of nanoparticles and external interaction from
viscoelastic medium defined as

_ 4(@}D11 + BDoy + 2a2BE(D1; + 2Des))
Vorn = 20ph '

(32b)

In the following analysis, we consider only the relative frequency shift and damped ratio shift for the first vibration
modei.e. forr =1andn = 1.

In general, the exact closed form solution for natural frequencies for the free vibration of nanoplates is not
funded. However, for the case of simply supported nanoplate, the exact closed form solution for natural frequencies
can be obtained. For other types of boundary conditions regarding to the clamped or free edges of nanoplate or any
other combination, the exact solutions for natural frequencies cannot be obtained. In such cases, one can use some of
the available numerical or approximation methods to calculate the frequencies. Adhikari and Chowdhury [6] and
Murmu and Adhikari [21], proposed a method based on energy principle to find approximated values for natural
frequencies of cantilever graphene sheet. In this work, we have shown an analytical procedure to obtain exact
solutions for complex natural frequencies of the graphene sheets with attached nanoparticles utilizing the nonlocal
theory of viscoelasticity.

4. Numerical results and validation study

In the first part of this section, the obtained analytical results are validated with the results from the
literature. Introducing various simplifications in the expressions for complex's natural frequency and damped shift
frequency, we can obtain expressions that allow us to perform obvious comparisons between two separate results.
However, in detailed parametric study we have shown several numerical examples that explains the influence of
different physical and geometrical properties i.e. parameters of the system on dynamical behavior of mass-
nanosensor.

4.1. Analytical validation study

The authors did not find any similar study analyzing the problem of nonlocal damped vibration of SLGS with
attached masses that is affected by in-plane magnetic field and used for mass-sensing application. Nevertheless, by
reducing derived expressions for damped natural frequency and damped frequency shift we can obtain results for
already presented models of mass-nanosensors based on vibration of SLGS. Therefore, in this subsection we present
several analytical studies for natural frequencies and frequency shifts to verify the obtained analytical results of
magnetically affected mass-nanosensor. It should be noted that the authors have found two corresponding works in
which vibration analysis of SLGS for mass-nanosensor application is presented by Shen et al. [22] and Fazelzadeh
and Ghavanloo [24]. Now, we introduce some simplifications in Eq. (28) and (30) and reduce expressions for
damped natural frequency and damped shift frequency as follow. When the parameters of stiffness k and viscosity b
of foundation, magnetic field parameter H, and internal viscosity 7, are equal to zero, we obtain reduced equation
for resonant frequency and frequency shift as

1/2

fon = Wy 1 atDyy + BrDyp + 2025 (D1p + 2Dg)
m —

_1 : (33)
2 2m|p [ph + Z?zl%sinz (ax;) sin?( ﬁnyj')]
and

Afrn = f(),rn — frn
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(34

From the equations (17) and (21) presented in the paper by Fazelzadeh and Ghavanloo [24], we can also
obtain expressions (33) and (34) when the temperature change is equal to zero. In the follow, we have reduced the
expression for damped natural frequency of magnetically affected orthotropic viscoelastic nanaoplate Eq. (28) and
damped frequency shift Eq. (30). That simplifications yields the case of isotropic nanoplate system by introducing
the following parameters E; = E, = E, 9, =U,; =3 and G;, = G which leads to the new bending stiffness
Di; = Dy, = (D1, + 2D¢6) = D and parameters of external influences H, =1, = k=b=0and j =1 in Eq. (28),
where we obtain natural frequency of the form

1/2
O 1 D(a} + B3)?

2m 2m|p [Ph + % sin?(a,x;) sin?( ,Bnyj)]

frn = (35)

This equation is the same as Eq. (25) from the paper by Shen et al. [22]. In order to justify our analytical results for
damped natural frequency, by searching the literature we have found the paper where the authors studied the free
vibration of viscoelastic orthotropic nanoplate, see Pouresmaeeli et al. [29]. By neglecting the effects of magnetic
field parameter and attached mass of nanoparticles in Eq. (27) we obtain

i = KA + @Dy + BpDyp + 2075 (Dy1p + 2Dg6)

- v (36)
G = bA + 74(atDyq + BrDyz + 202 (Dy; + 2Dgs)) (36b)
m 2Aph i
or in dimensionless form as
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which are the expressions for dimensionless undamped frequency w and damping ratio ¢ (see Eq. (17) as in the
paper by Pouresmaeeli et al. [29]). From obtained results for damped natural frequencies and damped frequency
shifts, we can conclude that the present study can be considered as the continuation study of previous works in the
field of nanosensors. The extension presented here is the analysis of damped vibration of SLGS together with
considered influence of magnetic field that are used for mass-nanosensor application.

4.2. Numerical examples

In Table 1, several typical examples of single and multiple added masses on the nanosensor are presented in
order to examine the influence of magnetic field and damping on relative damped frequency shift ®,., and relative
shift of damping ratio N,,,. In all of the examples, masses are located along the middle line of nanoplate. As for
example, in [24] the authors have examined several cases by adding the masses in more arbitrary order. In this
work, that is not the case since the used approach is sufficient to explain significant frequency shifts where multiple
masses are added along the middle line of nanoplate. Higher number of point masses can represent some kind of
biological particle, which is attached on nanoplate as distributed mass. The following values of parameters used in
numerical examples are adopted from paper by Fazelzadeh and Ghavanloo [24] : length of nanoplate a = 9.519[nm)],
width b = 4.844 [nm], elastic modules E; = 2.434 [TPa] and E, = 2.473 [TPa] of orthotropic nanoplate, shear
modulus G;, = 1.039 [TPa], Poisson's ratios ¥;, = ¥,; = 0.197, thickness of nanoplate h = 0.129 [nm] and mass
density p = 6316 [kg/m3]. Parameters of the in-plane magnetic field, stiffness and damping coefficients of the
viscoelastic medium are given in dimensionless form. In this paper, we adopted values of internal (structural)
damping coefficient T; in certain range in order to describe the influence of structural damping on dynamical
behavior of the system, Pouresmaeeliet al. [29]. Furthermore, influences of these parameters on relative damped
frequency shifts are presented in four different cases where a number of masses and its locations on the nanoplate
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are distinct. In all cases, frequency shifts increases for an increase of the magnetic field parameter. When no internal
damping and damping of the viscoelastic medium are considered, the relative damped frequency shift is higher. By
taking into account and increasing the values of damping parameters and dimensionless stiffness of the medium, the
value of relative damping frequency shift decreases. Such decrease of relative damped frequency shift is attributed
to the damping that is introduced into the system, which leads to a decrease of damped complex natural frequency.

The effect of a single or multiple masses on frequency shift is also significant and depends of the
appropriate location on the nanoplate. It is easy to note that frequency shift is significantly larger for a single mass
located at the middle of the nanoplate compared to the system with two, four or nine masses located at the middle
line of a nanoplate. This is attributed to the location of attached masses since the central position causes the largest
frequency shift whereas the positions of masses towards boundary cause a smaller frequency shifts. In addition, an
increase of a number of masses does not cause a significant increase of frequency shift that might be attributed to
the symmetric positions of attached masses with respect to the center of nanoplate and their nearness to the
boundaries of a nanoplate.

Table 1 The relative damped frequency shift for different values of magnetic field parameter, viscoelastic
coefficients and numbers and positions of masses.

Position Viscoelastic §25¢@ic "R parameter MP

Mechanical model m =10 [cg] ..
9,05
(8 coefficients \p_y yp_10 MP=25  MP=50
T, =0
B=0 ‘0.304063 037154  0.489205  0.806363
K=0
T, = 0.001
my=m (0.5,05)  B=001 0301725 0368979 0486107  0.798545
K =10
T, = 0.005
B =0.01 030005 0367782  0.485845  0.803072
K =10
T,=0
B=0 019217 0.270496  0.407079  0.77523
K=0
T, = 0.001

my=m/2 - (0.2505)  p_gq 0189482 0267552 0403519  0.766246
m,=m/2 (07505 ¥ _10

RN

T, = 0.005
B=001 0188167 0266858 0404071  0.773748
K=10
T,=0
B=0 °0.225119 0300251  0.431263  0.784398
K=0
m=m/4 (02,05 L _oo0
mp=m/4 - (04,05)  Th_ 01 0222534 0297419 0427837 0775753
ms; =m/4 (0.6,0.5) K =10
m, =m/4 (0.8,0.5) B
T, = 0.005
B=001 0221085 0296546 0428112  0.782279
K=10
(0.1,0.5) T, =0
my=m/9  (02,05) B=0 ‘0.207324 0284181  0.418201  0.779446
m, =m/9 (0.3,0.5) K=0
ms; =m/9 (0.4,0.5)
M, = m§9 Eo.s, o.g% T 0001
mg =m/9 0.6, 0. __ :
mo—m/o (0705 B=001 0201683 0281288 0414703 0770618
m,=m/9  (0.8,0.5) k=10
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mg =m/9 (0.9,0.5)

me = m)9 T, = 0.005
B =001 0.203303 0280509 0415124  0.77766
K =10

*Values of relative shift frequency obtained by using eq. (23) from paper Fazelzadeh and Ghavanloo [24]

Fig. 2 shows the influence of nonlocal parameter on relative damped natural frequency and relative
damping ratio shift for three different mass cases. From Fig. 2 a) it can be noticed that an increase of nonlocal
parameter is followed by an increase of relative damped frequency shift in all three mass cases. Further, the lowest
frequency shift can be observed for the case with two masses, the larger shift is for the case with four masses and
the largest one is for the single mass system. An opposite cases can be observed for the change of relative damping
ratio shift, where an increase of nonlocal parameter causes a decrease of damping ratio shift, Fig 2 b).

The influence of non-dimensional magnetic field parameter on relative damped frequency shift and relative
damping ratio shift is shown in Fig. 3. a). One can notice almost linear increase of frequency shift for an increase of
nonlocal parameter. This is related to the well-known property of graphene nanostructures whose natural
frequency increases for an increase of the magnitude of magnetic field that as discussed in a number of works. As
expected, in Fig 3 b) it can be noticed that there is no influence of magnetic field on damping ratio shift due to the
fact that it does not affect the damping properties of the system, Karlici¢ et al. [40].

To examine the changes of relative damped frequency shift and relative damping ratio shift for changes of
internal damping parameter we plotted several curves in Fig. 4 for nanosensor system with different number of
masses. Change of damped frequency shift is weak for an increase of internal damping parameter. However, major
changes can be observed for the damping ratio shift where an instant jump occurs in all three mass cases, for low
values of damping parameter. After a sudden jump, the frequency shift curves slightly increases and stagnate for
further increase of internal damping parameter.

a) b)
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= = "
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Fig. 2. Effects of nonlocal parameters on the a) relative damped frequency shift and b) relative damped ratio shift
for different number of nanoparticles when the total added mass weightis m = 10 [zg].
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Fig. 3 Effects of in-plane magnetic field parameter on the a) relative damped frequency shift and b) relative damped
ratio shift for different number of nanoparticles when the total added mass weightis m = 10 [zg].
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Fig. 4. Effects of internal damping parameter on the a) relative damped frequency shift and b) relative damped ratio

shift for different number of nanoparticles when the total added mass weightis m = 10 [zg].
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Fig. 5. Effects of total added mass weight on the a) relative damped frequency shift and b) relative damped ratio
shift for different number of nanoparticles.
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Fig. 6. Effects of length to thickness ratio ¥ = a/h, on a) relative damped frequency shift and b) relative damped
ratio shift, for different number of nanoparticles when the total added mass weightis m = 10 [zg].

In order to investigate the effect of different mass weights on the relative damped frequency shift and
relative damping ratio shift we plotted Fig. 5 for different number of masses in the system. It is obvious that both
relative frequency shift (Fig. 5 a)) and relative damping ratio shift (Fig. 5 b)) are increasing for an increase of mass
weight. In spite overall weight of attached masses is equal in all cases i.e. when a single and multiple masses are
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considered, frequency and damping ratio shifts differs significantly in the case of multiple masses. The reason for
this is the fact that overall added mass is distributed i.e. located at different positions on the nanosensor in the case
of several masses that causes major changes in the dynamic behavior.

Finally, Fig. 6 shows the influence of the length-to-thickness ratio 1) on the relative damped frequency and
damping ratio shift for different number of nanoparticles. It is obvious that frequency and damping ratio shifts are
having extremal i.e. maximum values for a certain value of length-to-thickness ratio. The maximum values of shift
imply the maximum sensibility that can be achieved for certain critical value of aspect ratio, which improves the
performances of mass-nanosensor. For the aspect ratio before the critical value, the frequency and damping ratio
shifts increases and after the critical value, their values decreases for an increase of the aspect ratio. Moreover, this
analysis shows that it is possible to find optimal dimensions of nanosensors in design process to achieve their
maximal sensitivity properties.

Following the main idea to measure frequency shift in nanosensor devices for mass-sensing application, we
investigated the case when the influence of magnetic field and vibration damping are considered. As it was observed
in the numerical analysis, both effects are having significant influence on relative damped frequency shift and
damping ratio shift. Damping slightly decreases the frequency shift caused by attached masses on nanosensor while
magnetic field increases the frequency shift. Thus, in our theoretical prediction of damped frequency shifts we
proved that magnetic field could be successfully applied to improve sensibility performances of mass-nanosensors
besides the optimal value of length-to-thickness ratio. In addition, it should be noted that damping effects are having
significant influence on dynamical behavior of nanomechanical systems and it needs to be considered for more
accurate modeling [29, 31].

5. Conclusion

Vibrating graphene sheets within a magnetic field are investigated for possible mass-nanosensor
application. The mass-sensing is possible due to the shift of frequency from attached nanoparticles. An explicit
relation for the relative damped frequency shifts and damping ratio shifts are derived based on the nonlocal theory
and taking into account the effects of external magnetic field, internal damping and coefficients of the surrounding
medium of the nanosensor. Validation study shows the accuracy and applicability of the obtained expressions, which
represent a generalization of the previous works found in the literature. From the parametric study, one can notice
that an increase of the magnitude of magnetic field causes an increase of frequency shift of nanosenor device and
consequently increases its sensibility performances. On the other hand, considering damping properties of the
nanosensor system it has been shown that it decreases the frequency shift and in such way decreases the sensibility
properties of the system. Finally, we found that length-to-thickness ratio is having a significant influence on
frequency and damping ratio shift. The main contributions of this work are:

(1) Closed form solution of damped natural frequency and damping ratio are obtained for viscoelastic
orthotropic nanoplate with attached several nanoparticles;

(2) Relative damped frequency and damping ratio shifts are derived as functions of magnetic field
parameter, internal damping coefficient and damping coefficient of viscoelastic medium;

(3) Itis concluded that the external magnetic field has a large impact on the sensibility of mass-nanosensors;

(4) Optimal value of length-to-thickness ratio can be found in order to achieve the best sensibility of mass-
nanosensor device.

Despite the proposed orthotropic nanoplate model catches much of the behavior of single-layer graphene sheet
nanostructure and accounts for the magnetic field and damping effects, it has few limits that should be considered in
future studies. Firstly, the presented model does not include van der Waals forces between nanoplate and attached
nanoparticle. Secondly, additional investigations on frequency limits and the influence of chirality should be
conducted. The results obtained in this paper can be used for further research on more complex graphene based
nanosensor systems working in the presence of magnetic field.
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Single-layered graphene sheet as mass-nanosensors with attached nanoparticles:

a) Physical model and b) Mechanical model.
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HIGHLIGHTS

Vibrating graphene sheets within a magnetic field is investigated as nanomechanical
biosensor.

Nonlocal elasticity model is used
Mass sensing is based on resonance frequency shift arising due to attached bio-molecules.
Viscoelastic orthotropic properties with attached nanoparticles are considered

External magnetic field has a great impact on the sensibility of given bio/mass-nanosensors.
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