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a b s t r a c t

In this paper, the first-passage failure of stochastic dynamical systems with fractional derivative and
power-form restoring force subjected to Gaussian white-noise excitation is investigated. With applica-
tion of the stochastic averaging method of quasi-Hamiltonian system, the system energy process will
converge weakly to an Itô differential equation. After that, Backward Kolmogorov (BK) equation
associated with conditional reliability function and Generalized Pontryagin (GP) equation associated
with statistical moments of first-passage time are constructed and solved. Particularly, the influence on
reliability caused by the order of fractional derivative and the power of restoring force are also examined,
respectively. Numerical results show that reliability function is decreased with respect to the time. Lower
power of restoring force may lead the system to more unstable evolution and lead first passage easy to
happen. Besides, more viscous material described by fractional derivative may have higher reliability.
Moreover, the analytical results are all in good agreement with Monte-Carlo data.

& 2015 Published by Elsevier Ltd.

1. Introduction

First-passage [1], aims to determine the probability that systems
response reaches the boundary of a bounded safe domain of state
space within its lifetime. Being as one branch of reliability in
mathematics, it can exactly describe the response feature and fatigue
life of certain structures such as offshore platform, civil construction,
etc. In the last several decades, stochastic averaging method has been
proved as a powerful technique to solve the first passage problem of
stochastic non-linear dynamics. The main feature of this method is
that it can leads original systems to a Markovian approximation with
systems dimensions reduced as well. Many authors dedicated their
efforts to searching for first passage by using the stochastic averaging
method. For example, Ariaratnam and Pi [2] explored first passage
time for envelope crossing for a linear oscillator. Robert and Spanos
[3–5] developed standard stochastic averaging method and app-
lied it to study reliability under evolutionary seismic excitations by
transforming random dynamical systems into a partial differential
equation. In 1990s, ZhuQ2 et al. [6] proposed the stochastic averaging
of quasi-Hamilton systems and investigated first passage problem
in random dynamical systems under stationary noise excitations.

Recently, the corresponding author and his coworker [7] examined
the first passage failure of MDOF quasi generalized Hamiltonian
systems based on the stochastic averaging method of quasi general-
ized Hamiltonian systems.

In recent years, with the development of new material called
viscoelastic material such as liquid crystal, rubber, polymer, etc., the
mathematical theory of fractional derivative to describe viscoelasti-
city especially viscous damping attracts much attention. In this
regard, Makris and Constantinou [8] explored fractional derivative in
deterministic Maxwell model for viscous-damper. Mainardi Q3[9] and
Rossikhin and Shitikova [10,11] provided an excellent perspective
about the research on application of fractional derivative in the field
of solid mechanics. Mainardi [12] gave a tutorial survey on fractional
calculus in linear viscoelasticity and the time-fractional derivative in
relaxation process. Shen et al. [13] studied the primary resonance of
Duffing oscillator with two kinds of fractional derivative terms using
the averaging method. It should be pointed out that the work
mentioned above endowed with fractional derivative were all
proceeded in deterministic systems.

At the beginning of new century, however, some researchers have
begun to engage in random dynamical system with fractional
derivative involved. Agrawal [14] suggested an analytical scheme
for stochastic dynamical systems containing fractional derivative.
Huang Q4and Jin [15] applied the stochastic averaging method for
deriving the stationary response and stability in a quasi-Hamiltonian
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system. SpanosQ5 and Evanogelatos [16] achieved non-stationary
response in a non-linear system with fractional derivative restoring
force by utilizing Newmark algorithm and statistical linearization.
PaolaQ6 et al. [17] examined stationary and non-stationary stochastic
response of linear fractional viscoelastic system. Chen and his cow-
orkers [18] proposed a review on stochastic dynamics and fractional
order optimal control of quasi integrable Hamiltonian systems with
damping modeled by a fractional derivative. Xu et al. [19,20]
developed an perturbation technique by combining the LP method
and multiple scales method to investigate the responses of the
stochastic Duffing oscillator with fractional damping which shows
good agreement with numerical simulations. More recently, MatteoQ7
et al. [21] obtained the stochastic response of non-linear oscillator
with fractional derivatives elements via the Wiener path integral.

It should be noted that the work with respect to fractional
derivative in random dynamical systems mainly dedicates to those
restoring forces with integer-power especially odd-integer power
restoring force. In fact, restoring force in engineering structures
especially in elastic–plastic seismic structures may be modeled as
purely non-linear function with arbitrary order of power-form, for
example, gðxÞ ¼ sgnðxÞ xj jβ , where β is arbitrary value, and many
references [22–29] have considered oscillators with such non-linear
restoring force in deterministic systems. In 2003, Gottlieb [22]
analyzed the frequencies of oscillators with fractional-power non-
linearities and obtained an expression for the exact period. Next year,
Pilipchuk [23] considered a class of elastic oscillators with power of
non-linear restoring force taking as real fraction, rational or irrational
number respectively. Recently, Kovacic and Rakaric [24] applied Ritz
method to derive higher-order approximations for oscillators with a
fractional-order restoring force. Wang and Yang [25] even proposed a
positive-power non-linear restoring force by studying amplitude-
frequency and phase-frequency characteristics of forced oscillators.
Except that, references [26–29] have emphasized the importance and
widely background of this kind of restoring force.

In this paper, the first passage failure of a commonly fractional
derivative system with a power-form non-linear restoring force,
where the power can be a fraction, is addressed by using the
combined method of stochastic averaging method for quasi Hamil-
tonian systems and diffusion theory of first passage failure. Two
cases, namely, purely power-form non-linear restoring force and
combination of linear with non-linear restoring forces are consid-
ered. Besides, the Monte-Carlo simulation will be employed to
examine the efficiency and accuracy of the proposed approaches.

2. Model and formulations

Consider non-linear dynamical systems with fractional deriva-
tive and power-form restoring force subjected to Gaussian white-
nose excitations, the motion of equation can be expressed in the
following form:

€xþεf ðx; _xÞDαxðtÞþgðxÞ ¼ ε1=2hkðx; _xÞWkðtÞ; k¼ 1;2;…m; mAZþ� �
ð1Þ

where xðtÞ is a non-Markov process, usually, denotes generalized
displacement, f ðx; _xÞ and hkðx; _xÞ are linear or non-linear functions
with respect to x and _x. ε is a small parameter, and WkðtÞ are
uncorrelated Gaussian white- noise with zero means and correla-
tion functions, which satisfy

E WkðtÞWlðtþτÞ½ � ¼ 2Dklδ τð Þ; k; l¼ 1;2;…m

where δðτÞ is Dirac Delta function, Dkl are constants. DαxðtÞ is
Caputo-type fractional derivative and defined by

DαxðtÞ ¼ 1
Γðn�αÞ

Z t

0

xðnÞðt�τÞ
τα

dτ;

n¼ α½ �þ1; n�1oαrn ð2Þ
gðxÞ is a non-linear restoring force and characterized by a power-
form function

gðxÞ ¼
X
β

cβsgnðxÞ xj jβ ð3Þ

where β is an arbitrary non-negative real number and cβ is a
constant. To sum up, the dynamical system (1) is characterized by
fractional derivative and power-form restoring force with weakly
external and (or) parametric random excitations.

Suppose that x¼ x1 and _x¼ x2, system (1) can be rewritten as a
set of first-order differential equations, that is

_x1 ¼ x2
_x2 ¼ �εf ðx1; x2ÞDαx1ðtÞ�gðx1Þþε1=2hkðx1; x2ÞWkðtÞ

(
ð4Þ

Now consider the free vibration of the dynamical system (1) in the
case of ε¼ 0, then

€x1þgðx1Þ ¼ 0 ð5Þ
Correspondingly, the Hamiltonian function of this system HðtÞ8H
is a slow-varying variable, which satisfies the following equation:

1
2 x

2
2þVðx1Þ ¼H ð6Þ

where V ðx1Þ is the potential energy of the system and estimated by

Vðx1Þ ¼
Z x1

0
gðtÞdt ð7Þ

Substituting (3) into (7), it may have

Vðx1Þ ¼
X
β

cβ
βþ1

xβ1 ð8Þ

According to stochastic differential law [6], the equation governing
Hamiltonian function satisfies

_H¼ ε �x2f ðx1; x2ÞDαx1ðtÞþ1
2 σkðx1; x2Þσlðx1; x2Þ

� �
þε1=2x2σkðx1; x2ÞWkðtÞ ð9Þ

where

σkðx1; x2Þσlðx1; x2Þ ¼ 2Dklhkðx1; x2Þhlðx1; x2Þ k; l¼ 1;2;…m ð10Þ
the Hamiltonian function will weakly converge to an averaged Itô
differential equation on the basis of Khasminskii averaging theo-
rem [30] if ε-0, which is governed by

dH¼mðHÞdtþσðHÞdBðtÞ ð11Þ
where BðtÞ is standard Wiener process, mðHÞ and σðHÞ are drift and
diffusion functions, respectively, they can be calculated by sto-
chastic averaging procedure of quasi-Hamiltonian system [6] as
follows:

mðHÞ ¼ Fðx1; x2Þ
� �

; ð12Þ

σ2ðHÞ ¼ Gklðx1; x2Þ
� �

; k; l¼ 1;2;…m; ð13Þ
in which

F ¼ �x2f ðx1; x2ÞDαx1ðtÞþ1
2 σkðx1; x2Þσlðx1; x2Þ; ð14aÞ

Gkl ¼ x22σkðx1; x2Þσlðx1; x2Þ; k; l¼ 1;2;…m; ð14bÞ

dh i ¼ 1
TðHÞ

Z
Ω
d dx1; ð15Þ

x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H�2Vðx1Þ

p
; ð16Þ

Ω¼ x1; x2ð Þ
		Hðx1;0ÞrH


 � ð17Þ
In order to get the detail expressions for averaged drift and

diffusion coefficients, the joint response process ðx1; x2Þ is needed
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to be transformed to a pair of slow varying processes denoted by
ðaðtÞ; θðtÞÞ. To that end, a generalized Van der Pol transformation is
introduced as follows:

x1ðtÞ ¼ aðtÞ cos φðtÞ
x2ðtÞ ¼ �aðtÞωðaÞ sin φðtÞ ð18Þ

where φðtÞ ¼ R t
0 ωðaÞdτþθðtÞ, aðtÞ is envelope process and deter-

mined by aðtÞ ¼ V �1ðHÞ; where VðÞ is potential function of system
and defined by (8). θðtÞ is phase process, it is slow varying with
respect to time as same as envelope process. ωðaÞ is system's
averaged frequency, and decided by following equation:

ωðaÞ ¼ 2π
4
R a
0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðaÞ�2VðxÞ

p dx
ð19Þ

It is seen that the fractional derivative with Caputo definition is
essentially a generalized integral with derivative of time-delay in it,
usually, it is very difficult to deal with a higher fractional order in
mathematics. Herein only the case 0oαr1 in this paper is con-
sidered, other values for α will be discussed further in our future work.

According to formula (18) and suppose that τ is small, we have

x2ðt�τÞ � �aðtÞωðaÞ sin ðφðtÞ� _φðtÞτÞ
� x2ðtÞ cos ωτþx1ðtÞω sin ωτ ð20Þ

Then the main integral part in Caputo fractional derivative defini-
tion can be rewritten as

R t
0
_xðt� τÞ
τα dτ ¼ x2ðtÞ

Z t

0

cos ωτ

τα
dτþx1ðtÞω

sin ωτ

τα
dτ

� 
ð21Þ

It turns out that how to calculate or approximate the integrals
appeared in (21) is an important task to replace the complicated
Caputo-type fractional derivative in terms of envelope and fre-
quency. Fortunately, the following two generalized integrals can
play a role to solve this problem, they are, respectively

R t
0

sin ωτ
τα dτ ¼ωα�1ðaÞ Γð1�αÞ cos πα

2
� cos ωt

ωtð Þα þoðωtÞ�α

� 
ð22Þ

R t
0

cos ωτ
τα dτ ¼ ωα�1ðaÞ Γð1�αÞ sin πα

2
þ sin ωt

ωtð Þα þoðωtÞ�α

� 
ð23Þ

On the basis of integrals of (22) and (23), then Caputo-type
fractional derivative can be approximated as

Dαx1ðtÞ ¼ ωα�1ðaÞ x2ðtÞ sin πα
2 þx1ðtÞ cos πα

2

� �
þωα�1ðaÞ
Γð1�αÞ

x1ðtÞ cos ωt�x2ðtÞ sin ωt
ðωtÞα

� 
þoðωtÞ�α�1 ð24Þ

After that, the drift function and diffusion function in differential
equation (11) can be computed out completely by means of
stochastic averaging method mentioned ahead.

3. First-passage failure

Suppose that a safety domain of Hamiltonian function HðtÞ is an
open interval D¼ ½0; ∂DÞ, where ∂D is a smooth boundary of D. As
defined in the part of introduction, reliability of a structure depends
on the probability of reaching boundary within the system lifetime.
Furthermore, the system or the structure will be destroyed once the
system response crosses beyond the boundary of safety domain.
Therefore, conditional reliability function should be defined as
follows:

Rðt jH0Þ ¼ pfHðsÞAD; sA ½0; tÞjHð0Þ ¼H0ADg ð25Þ
which satisfies a BK equation in the form of partial differential

equation

∂R
∂t

¼mðH0Þ
∂R
∂H0

þ1
2
σ2ðH0Þ

∂2R
∂H2

0

ð26Þ

In which mðH0Þ is governed by Eq. (12) and σ2ðH0Þ is governed by Eq.
(13). Except that, boundary condition and initial condition are required
in order to solve BK equation successfully. The initial condition is

Rð0jH0Þ ¼ 1; H0AD ð27Þ
and two boundary conditions are, respectively

Rðt jH0Þ ¼ 0; if H0A∂D
Rðt jH0Þr1; if H0 ¼ 0 ð28Þ

On the other hand, mean first-passage time EðTÞ is another
important variable to measure the reliability of a stochastic
dynamical system. First-passage time refers to the special time
that the responses of system exceed the boundary of the safe
domain at the first time on some certain conditions. It has been
proved that the statistical moments of first-passage time fulfill the
following GP equation, which has a form of differential equation.
Denote μN Hð Þ ¼ E TN

� �
, then they are governed by

m H0ð ÞdμNþ 1
dH0

þ1
2σ

2 H0ð Þd
2μNþ 1
dH0

¼ � Nþ1ð ÞμN
N¼ 0;1;2… ð29Þ

Similarly, boundary conditions are needed to solve the GP equation.
The left boundary condition is

μNþ1 H0ð Þ ¼ finite; if H0 ¼ 0 ð30Þ
And the right boundary condition is

μNþ1 H0ð Þ ¼ 0; if H0 ¼ ∂D

Specifically, the mean first-passage time EðTÞ is exactly equivalent
to μ1 if the initial value is μ0 ¼ 1.

4. Examples and numerical results

4.1. Example 1

Consider

f x; _xð Þ ¼ 1�x2; h1 x; _xð Þ ¼ 1; h2 x; _xð Þ ¼ x2

Then the dynamical system (1) is subjected to external and
parametric Gaussian white-noise excitations, the system can be
written as

€xþε 1�x2
� �

Dαx tð Þþc2βsgn xð Þ xj jβ

¼ ε1=2 W1 tð Þþx2W2 tð Þ� � ð31Þ
According to formula (12) and (13), in this example

Fðx1; x2Þ
� �

¼ 1
T1ðHÞ

Z
Ω

�ð1�x21Þx2ωα�1ðaÞ
x2ðtÞ sin πα

2 þx1ðtÞ cos πα
2

� �
þD11þD22x41

8>><
>>:

9>>=
>>;dx1 ð32Þ

Gðx1; x2Þ
� �¼ 1

T1ðHÞ
Z
Ω

2D11x22þ2D22x41x
2
2

� �
dx1 ð33Þ

where

T1ðHÞ ¼
Z
Ω

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H�2cβx

βþ1
1 =ðβþ1Þ

q dx1

¼ 4

ffiffiffiffiffiffiffiffiffiffi
2

βþ1

s
a

1� β
2

Z π=2

0
sin φð Þ

1� β
βþ 1 dφ ð34Þ

in which a¼ βþ1ð ÞH=cβ
� �1= βþ1ð Þ

:
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The corresponding BK equation governing the conditional
reliability function and the GP equation governing the mean
first-passage time are the same as Eqs. (26) and (29), respectively,
and they are solved numerically together with suitable boundary
and initial conditions.

In Figs. 1–3, some numerical results for the conditional relia-
bility function and mean of the first-passage time have been
obtained and shown. It is seen from Fig. 1 that the reliability
probability is a decreasing function with respect to time. α is the
order of fractional derivative, as a matter of fact, different values of
α have small influence on reliability functions in the case of
external and parametric excitations on system in Example 4.1. In
Fig. 1, the solid lines represent analytical results obtained from
solving BK equation (26) with energy boundary values ∂D¼ 5; but
hollow triangles denote the numerical results obtained from
Monte-Carlo Simulation by performing on original dynamical
system (1). Fig. 2 displayed the mean first-passage time by solving
GP equation (29) when N¼ 1 with the same parametric values as
in Fig. 1. Note that energy function HðtÞ stay longer in the safe
domain if initial energy is smaller. It is worthy to say that
numerical results in Figs. 1 and 2 are all in excellent agreement
for parameter values ε¼ 1; β¼ 3:5; D11 ¼ 0:05; D22 ¼ 0:05; cβ ¼ 1:

In addition, we also examined the change caused by power-form
restoring force on reliability in Fig. 3, the rest parametric values are
same as in Fig. 1 except for α¼ 0:1: It is seen that the strong non-
linearity plays a good role in improving system reliability. Restoring
force usually depicts the ability that structures restore to the original
shape after external loads such as noises are removed. Therefore, the
small fractional power of non-linear restoring force in Fig. 3 may
lead the system to more unstable evolution. That means first
passage is correspondingly easy to happen.

4.2. Example 2

Let

εf ðx; _xÞ ¼ β0ð1�x2Þ; hðx; _xÞ ¼ 1

g xð Þ ¼ ω2
0xþcβsgn xð Þ xj jβ ð35Þ

and rewrite the original system (1) as

€xþβ0 1�x2
� �

Dαx tð Þþω2
0xþcβsgn xð Þ xj jβ ¼W tð Þ ð36Þ

In this example, the system is subjected to external excitation
absolutely. We change the expression of restoring force, where
gðxÞ is composed by a linear function and a non-linear power-form
function. In this case, the mathematical procedure to obtain aver-
aged differential equation is more complicated since frequency of
the system will be difficult to obtain and it should be derived
numerically.

According to (7), we have

Vðx1Þ ¼
1
2
ω2
0x

2
1þ

cβ
βþ1

x1j jβ:

Then by solving from Eq. (6), the generalized velocity will be of
form

x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H�ω2

0x
2
1�2cβx

βþ1
1 =ðβþ1Þ

q
;

Substituting this expression into formula (14a) and (14b) and
finishing stochastic averaging procedure (12) and (13), then drift
function and diffusion function will be followed. After that, the
conditional reliability function and mean of the first-passage time
associated with the averaged equation can be also harvested by
solving the BK equation and GP equation, respectively.

Fig. 4 shows the reliability function with respect to time in
Example 4.2, where parameters are β0 ¼ 0:05; β¼ 3:5; ω0 ¼ 1;
D11 ¼ 0:05; cβ ¼ 1; and ∂D¼ 5 respectively.

It is founded that, different from Example 4.1, the order of
fractional derivative play an obvious role in changing reliability of
system. Generally, fractional derivative is used to represent con-
stitutive relation for special viscoelastic material in structure
engineering, and the order of fractional derivative is helpful to
distinguish the physical feature of viscoelastic material. If α value
is bigger, then the material in physical feature tends to viscous,
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Fig. 1. Reliability functions with respect to time. The parameters are ε¼ 1; β¼ 3:5;
D11 ¼ 0:05; D22 ¼ 0:05; ∂D¼ 5; cβ ¼ 1; and H0 ¼ 0:0:

Fig. 2. Mean first passage time with respect to initial energy. The other parameters
are the same as those in Fig. 1.

Fig. 3. The change of reliability functions caused by power-form restoring force
with ∂D¼ 5 and α¼ 0:1: The other parameters are the same as those in Fig. 1.
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otherwise, the material tends to elastic. It is shown in Fig. 4 that
the reliability of system is enhanced greatly by the same α values,
and integer order of derivative can reach the maximum reliability.
This suggests that more viscous viscoelastic material in structural
engineering may have higher safety.

Fig. 5 plotted the mean first-passage time with respect to initial
energy. Comparatively, the time has been prolonged very much. Fig. 6
showed the effect of safe domain boundary on system reliability,
where the parameters are the same as those in Fig. 4 except for
α¼0.5. Obviously, the larger of boundary value ∂D is, the higher
probability of reliability is as well. Fig. 7 gave some numerical results
about influence caused by parameter β; inwhich ∂D¼ 10 and α¼ 0:5:
Similarly, the larger β is, the higher reliability probability is.

Correspondingly, we can choose a suitable value to design restoring
force according to this result.

5. Conclusions

To sum up, in this paper, we have investigated the first-passage
failure in a fractional derivative system with power-form restoring
force. Stochastic averaging method is used to convert the original
system into an Itô differential equation. According to the definition
of first-passage failure, BK equation and GP equation are derived and
solved, respectively. The numerical results tell us that the reliability
probabilities are decreased monotonously with respect to the time.
Higher order of fractional derivative can lead to higher reliability of
the system. Boundary value of safe domain can affect the reliability
probability greatly. The larger boundary value it is, the higher
probability is. Exponent value of β in power-form function has also
influence on reliability. Larger exponent may yield to enhanced
reliability.
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