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Abstract. In this manuscript, we generalize, improve, and enrich recent results established by
Budhia et al. [L. Budhia, H. Aydi, A.H. Ansari, D. Gopal, Some new fixed point results in
rectangular metric spaces with application to fractional-order functional differential equations,
Nonlinear Anal. Model. Control, 25(4):580–597, 2020]. This paper aims to provide much simpler
and shorter proofs of some results in rectangular metric spaces. According to one of our recent
lemmas, we show that the given contractive condition yields Cauchyness of the corresponding
Picard sequence. The obtained results improve well-known comparable results in the literature.
Using our new approach, we prove that a Picard sequence is Cauchy in the framework of rectangular
metric spaces. Our obtained results complement and enrich several methods in the existing state-of-
art. Endorsing the materiality of the presented results, we also propound an application to dynamic
programming associated with the multistage process.

Keywords: rectangular metric space, triangular α-admissible, α-regular with respect to η, dynamic
programing, fixed point.

1 Introduction and preliminaries

It is well known that the Banach contraction principle [5] is one of the most essential
and attractive results in nonlinear analysis and mathematical analysis in general. The
whole fixed point theory is a significant subject in different fields as geometry, differential
equations, informatics, physics, economics, engineering, and many others (see [8, 23, 25,
27]). After the solutions are guaranteed, the numerical methodology has been adopted to
obtain the approximated solution [28].
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In 2000, generalized metric spaces were introduced by Branciari [6] in such a way
that the triangle inequality is replaced by the quadrilateral inequality d(x, y) 6 d(x, z) +
d(z, u) + d(u, y) for all pairwise distinct points x, y, z, and u. Any metric space is
a generalized metric space, but in general, generalized metric space might not be a metric
space. Various fixed point results were established in such spaces (see [3,4,7,9–13,16,26]
and references therein).

In this paper, we will discuss some results recently established in [7]. Firstly, we
propound some basic notions and definitions, which are necessary for the subsequent
analysis.

Definition 1. Let M be a nonempty set, and let d : M × M → [0,+∞) satisfy the
following conditions: for all p, r ∈ M and all distinct u, v ∈ M each of them different
from p and r,

(i) d(p, r) = 0 if and only if p = r;
(ii) d(p, r) = d(r, p);

(iii) d(p, r) 6 d(p, u) + d(u, v) + d(v, r) (quadrilateral inequality).

Then the function d is called a rectangular metric, and the pair (M,d) is called a rectan-
gular metric space (in short RMS).

Notice that the definitions of convergence and the Cauchyness of sequences in rectan-
gular metric spaces are similar to those found in the standard metric spaces. Also, a rect-
angular metric space (M,d) is complete if every Cauchy sequence in M is convergent.

Samet et al. [24] introduced the concept of an α−ψ-contractive mapping and proved
fixed point theorems for such mappings. Karapınar [13] extended the concepts given
in [24] to obtain the existence and uniqueness of a fixed point of α−ψ-contraction map-
pings in the setting of rectangular metric spaces. After that, Salimi et al. [23] introduced
a modified α−ψ-contractive mapping and obtained some fixed point theorems in the
complete metric spaces. Alsulami et al. [1] established some fixed point theorems for
an α−ψ-rational-type contractive mapping in the context of rectangular metric spaces.

Let Ψ be the family of all functions ψ : [0,+∞) → [0,+∞) such that ψ is nonde-
creasing and continuous (so-called an altering distance function) and ψ(t) = 0 if and only
if t = 0 (for more details, see [15, 28]).

Definition 2. (See [23].) Let T be a self-mapping on a metric space (M,d), and let α, η :
M ×M → [0,+∞) be two functions. Then T is called an α-admissible mapping with
respect to η if α(p, r) > η(p, r) implies that α(Tp, Tr) > η(Tp, Tr) for all p, r ∈M .

If η(p, r) = 1 for all p, r ∈M , then T is called an α-admissible mapping.
T is said to be a triangular α-admissible mapping if for all p, r, q ∈M , the following

holds: (α(p, r) > 1 and α(r, q) > 1) implies α(p, q) > 1.
Otherwise, a rectangular metric space (M,d) is said to be an α-regular with respect

to η if for any sequence pn in M such that α(pn, pn+1) > η(pn, pn+1) for all n ∈ N and
pn → p as n→ +∞, implies α(pn, p) > η(pn, p).

For more details on the triangular α-admissible mapping, see [14, pp. 1, 2]. In this
paper the following results play an important role.
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Lemma 1. (See [14, Lemma 7]). Let T be a triangular α-admissible mapping. Assume
that there exists p0 ∈ M such that α(p0, Tp0) > 1. Define a sequence {pn} by pn =
Tnp0. Then

α(pm, pn) > 1 for all m,n ∈ N ∪ {0} with m < n.

The following definition is due to [2], where the class of C-functions is introduced.

Definition 3. A C-function F : [0,+∞)2 → R is a continuous function such that for all
x, y ∈ [0,+∞):

(i) F (x, y) 6 x;
(ii) F (x, y) = x implies that either x = 0 or y = 0.

The letter C will denote the class of allC-functions. For detailed description and examples
of C-functions, we refer the reader to [2, 7].

The following remark plays a significant role in the rest of this article.

Remark 1. It is worth to mention that for each C-function, F (x, y) < x if x 6= 0 and
y 6= 0.

In [7] the authors proved the following two theorems.

Theorem 1. Let (M,d) be a complete Hausdorff rectangular metric space, and let T :
M → M be an α-admissible mapping with respect to η. Suppose there exist F ∈ C and
ψ, φ ∈ Ψ such that, for p, r ∈M ,

α(p, r) > η(p, r) implies ψ
(
d(Tp, Tr)

)
6 F

(
ψ
(
m(p, r)

)
, φ
(
m(p, r)

))
,

where

m(p, r) = max

{
d(p, r), d(p, Tp), d(r, T r),

d(p, Tp)d(r, T r)

1 + d(p, r)
,
d(p, Tp)d(r, T r)

1 + d(Tp, Tr)

}
.

Assume that:

(i) there exists u0 ∈M for which α(u0, Tu0) > η(u0Tu0);
(ii) for all u, v, w ∈M , (α(u, v) > η(u, v) andα(v, w) > η(v, w)) impliesα(u,w) >

η(u,w);
(iii) T is continuous or M is α-regular with respect to η.

Then there exists x ∈M such that Tnx = x for some n ∈ N, i.e., x is a periodic point. If
in addition, α(x, Tx) > η(x, Tx) for each periodic point x, then T has a fixed point.

Theorem 2. To ensure the uniqueness of the fixed point in Theorem 1, the authors add
the following condition:

α(a, b) > η(a, b) for all a, b ∈ F (T ) = {w ∈M : Tw = w}.

Taking F (x, y) = x− y, the authors obtained the following corollaries.
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Corollary 1. Let (M,d) be a Hausdorff and complete rectangular metric space, and let
T : M → M be an α-admissible mapping with respect to η. Assume that there exists
ψ, φ ∈ Ψ such that, for p, r ∈M ,

α(p, r) > η(p, r) implies d(Tp, Tr) 6 ψ
(
m(p, r)

)
− φ

(
m(p, r)

)
,

where

m(p, r) = max

{
d(p, r), d(p, Tp), d(r, T r),

d(p, Tp)d(r, T r)

1 + d(p, r)
,
d(p, Tp)d(r, T r)

1 + d(Tp, Tr)

}
.

Also suppose that the following assertions are contended:

(i) there exists u0 ∈M for which α(u0, Tu0) > η(u0Tu0);
(ii) for all u, v, w ∈M , (α(u, v) > η(u, v)and α(v, w) > η(v, w)) impliesα(u,w) >

η(u,w);
(iii) T is continuous or M is α-regular with respect to η.

Then T has a periodic point x ∈ M . If in addition, α(x, Tx) > η(x, Tx) holds for
each periodic point, then T has a fixed point. Moreover, if for all a, b ∈ F (T ), we have
α(a, b) > η(a, b), then the fixed point is unique.

Taking ψ(t) = t in Corollary 1, the authors obtained the following result.

Corollary 2. Let (M,d) be a Hausdorff and complete rectangular metric space. Let
T : M → M be an α-admissible mapping with respect to η. Assume that there exists
φ ∈ Ψ such that, for x, y ∈M ,

α(p, r) > η(p, r) implies d(Tp, Tr) 6 m(p, r)− φ
(
m(p, r)

)
,

where

m(p, r) = max

{
d(p, r), d(p, Tp), d(r, T r),

d(p, Tp)d(r, T r)

1 + d(p, r)
,
d(p, Tp)d(r, T r)

1 + d(Tp, Tr)

}
.

Also suppose that the following assertions hold:

(i) there exists u0 ∈M for which α(u0, Tu0) > η(u0Tu0);
(ii) for all u, v, w ∈M , (α(u, v) > η(u, v)and α(v, w) > η(v, w)) impliesα(u,w) >

η(u,w);
(iii) T is continuous or M is α-regular with respect to η.

Then T has a periodic point x ∈ M . If in addition, α(x, Tx) > η(x, Tx) for each
periodic point, then T has a fixed point. Moreover, if for all a, b ∈ F (T ), we have
α(a, b) > η(a, b), then the fixed point is unique.

Consider φ(t) = (1− q)t for 0 < q < 1 in Corollary 2.

Corollary 3. Let (M,d) be a Hausdorff and complete rectangular metric space. Let
T :M →M be an α-admissible mapping with respect to η such that, for p, r ∈M ,

α(p, r) > η(p, r) implies d(Tp, Tr) 6 qm(p, r),

where m(p, r) is the same as in Corollary 2. Suppose also that the following hold:
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(i) there exists u0 ∈M for which α(u0, Tu0) > η(u0Tu0);
(ii) for all u, v, w ∈M , (α(u, v) > η(u, v)and α(v, w) > η(v, w)) impliesα(u,w) >

η(u,w);
(iii) T is continuous or M is α-regular with respect to η.

Then T has a periodic point x ∈ M . If in addition, α(x, Tx) > η(x, Tx) for each
periodic point, then T has a fixed point. Moreover, if for all a, b ∈ F (T ), we have
α(a, b) > η(a, b), then the fixed point is unique.

In the sequel the authors in [7] gave two examples, which support their obtained
theoretical results. In the next example, rectangular metric space (M,d) is not Hausdorff,
and the mapping T has no fixed point. So the hypothesis that (M,d) is Hausdorff does
not guarantee the existence of a fixed point.

Example 1. Let M1 = {0, 2}, M2 = {1, 1/2, 1/3, . . . }, and M = M1 ∪M2. Define
d :M ×M → [0,+∞) as follows:

d(p, r) =


0, p = r

1, p 6= r and {p, r} ⊂M1 or {p, r} ⊂M2,

r, p ∈M1 and r ∈M2,

p, p ∈M2 and r ∈M1.

Then (M,d) is a complete rectangular metric space. Note that (M,d) is not Hausdorff
because there exists no s > 0 such that B(0, s) ∩ B(2, s) = ∅. Given α, η : M ×M →
[0,+∞) as

α(p, r) =

{
4, p 6= 0 or r 6= 1

j ,

2, p = 0 and r = 1
j ,

η(p, r) = 3, (p, r) ∈M ×M.

Define T :M →M by

T (0) =
1

2
, T (2) = 0, and T

(
1

j

)
= 0 for

1

j
∈M2.

For their convenience, the authors in [7] use the following symbols:

A1 = d(p, r), A2 = d(p, Tp), A3 = d(r, T r),

A4 =
d(p, Tp)

1 + d(p, r)
and A5 =

d(p, Tp)

1 + d(Tp, Tr)
.

Define the functions F : [0,+∞) × [0,+∞) → R and ψ, φ : [0,+∞) → [0,+∞) as
F (s, t) = 5s/6, ψ(t) = 2t/3, and φ(t) = t/4, respectively. Using the obtained table, the
authors easily checked that the following condition is valid.

ψ
(
d(Tp, Tr)

)
6 F

(
ψ
(
m(p, r)

)
, φ
(
m(p, r)

))
whenever α(p, r) > η(p, r), but F (T ) is empty.
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However, the given example is not correct, namely, it does not satisfy all the conditions
of Theorem 2 [7, Thm. 1]. It is easy to check that T is not α-admissible with respect to η.
Indeed,

α

(
1

j
, 0

)
= 4 > 3 = η

(
1

j
, 0

)
,

while

α

(
T
1

j
, T0

)
= α

(
0,

1

2

)
= 2 < 3 = η

(
T
1

j
, T0

)
.

Further, T is not continuous. Indeed, d(1/j, 0) = 1/j → 0 as j → +∞, but d(T/j, T0) =
d(0, 1/2) = 1/2 9 0 as j → +∞.

Also, α(0, 0) is not defined, we do not know whether (M,d) is α-regular.
The following two lemmas, in the setting of rectangular metric spaces, are modifica-

tions of a well-known result in metric spaces (see, e.g., [22, Lemma 2.1]). Many known
proofs of fixed point results in rectangular metric spaces become much simpler and shorter
using both these lemmas.

Lemma 2. (See [12].) Let (M,d) be a rectangular metric space, and let {pn} be a se-
quence in it with distinct elements (pn 6= pm for n 6= m). Suppose that d(pn, pn+1)
and d(pn, pn+2) tend to 0 as n → +∞ and that {pn} is not a Cauchy sequence. Then
there exist ε > 0 and two sequences {m(k)} and {n(k)} of positive integers such that
n(k) > m(k) > k, and the following sequences tend to ε+ as k → +∞:{

d(pn(k), pm(k))
}
,
{
d(pn(k)+1, pm(k))

}
,
{
d(pn(k), pm(k)−1)

}
,{

d(pn(k)+1, pm(k)−1)
}
,
{
d(pn(k)+1, pm(k)+1)

}
.

Lemma 3. Let {pn+1}n∈N∪{0} = {Tpn}n∈N∪{0} = {Tnp0}n∈N∪{0}, T 0p0 = p0 be
a Picard sequence in rectangular metric space (M,d) inducing by the mapping T :
M → M and initial point p0 ∈ X . If d(pn, pn+1) < d(pn−1, pn) for all n ∈ N,
then pn 6= pm whenever n 6= m.

Proof. Let pn = pm for some n,m ∈ N with n < m, then pn+1 = Tpn = Tpm = pm+1,
and we acquire

d(pn, pn+1) = d(pm, pm+1) < d(pm−1, pm) < · · · < d(pn, pn+1),

which is a contradiction.

In the proof of our results, the following exciting and significant proposition is used
in the context of rectangular metric spaces.

Proposition 1. (See [17, Prop. 3].) Suppose that {pn} is a Cauchy sequence in a rect-
angular metric space (M,d), and suppose limn→+∞ d(pn, p) = 0. Then for all r ∈ M ,
limn→+∞ d(pn, r) = d(p, r). In particular, {pn} does not converge to r if r 6= p.

https://www.journals.vu.lt/nonlinear-analysis
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2 Some improved results

In this section, we generalize and improve Theorem 1 along with its corollaries. Obtained
generalizations extend the result in several directions. It may be noted: we use only one
function α : M ×M → [0,+∞) instead of two α and η as used in [8, Defs. 2.3, 3.1.].
This is possible according to the results enunciated in [21, p. 2].

Note that we neither assume that the rectangular metric space (M,d) is Hausdorff,
nor that the mapping d is continuous.

The authors [1, p. 6, line 6+)] claimed that the sequence {pn} in rectangular metric
space (M,d) is a Cauchy sequence if limn→+∞ d(pn, pn+k) = 0 for all k ∈ N. However,
it is ambivalent. We rectify the proof that the sequence {pn} is Cauchy. For more details,
we refer the reader to the noteworthy and informative article [20, p. 7].

Our first new result in this paper is the following.

Theorem 3. Let (M,d) be a complete rectangular metric space, and let T :M →M be
a triangular α-admissible mapping, where α : M ×M → [0,+∞). Assume there exist
F ∈ C and ψ, φ ∈ Ψ such that, for p, r ∈M ,

α(p, r) > 1 implies ψ
(
d(Tp, Tr)

)
6 F

(
ψ
(
m(p, r)

)
, φ
(
m(p, r)

))
, (1)

where

m(p, r) = max

{
d(p, r), d(p, Tp), d(r, T r),

d(p, Tp)d(r, T r)

1 + d(p, r)
,
d(p, Tp)d(r, T r)

1 + d(Tp, Tr)

}
.

Also, suppose that the following assertions are satisfied:

(i) there exists u0 ∈M such that α(u0, Tu0) > 1;
(ii) T is continuous or (M,d) α-regular.

Then T has a fixed point. Moreover, if for all p, r ∈ F (T ), we have α(p, r) > 1, then the
fixed point is unique.

Proof. Given u0 ∈M such that

α(u0, Tu0) > 1. (2)

Define a sequence {un} in X by un = Tun−1 = Tnu0 for all n ∈ N. If uk+1 = uk for
some k ∈ N, then Tuk = uk, i.e., uk is a fixed point of T , and the proof is completed in
this case.

From now, suppose that un 6= un+1 for all n ∈ N ∪ {0}. Using (2) and the fact that
T is an α-admissible mapping, we have

α(u1, u2) = α(Tu0, Tu1) > 1.

By induction we get

α(un, un+1) > 1 for all n ∈ N ∪ {0}.

Nonlinear Anal. Model. Control, 27(1):163–178, 2022
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In the first step, we will show that the sequence {d(un, un+1)} is nonincreasing and
d(un, un+1)→ 0 as n→ +∞. From (1) we have

ψ
(
d(un, un+1)

)
= ψ

(
d(Tun−1, Tun)

)
6 F

(
ψ
(
m(un−1, un)

)
, φ
(
m(un−1, un)

))
, (3)

where

m(un−1, un) = max

{
d(un−1, un), d(un−1, un), d(un, un+1),

d(un−1, un)d(un, un+1)

1 + d(un−1, un)
,
d(un−1, un)d(un, un+1)

1 + d(un, un+1)

}
6 max

{
d(un−1, un), d(un, un+1)

}
.

Utilizing Remark 1 and condition (3), it follows that

ψ
(
d(un, un+1)

)
< ψ

(
max

{
d(un−1, un), d(un, un+1)

})
. (4)

If max{d(un−1, un), d(un, un+1)} = d(un, un+1), we get a contradiction. Indeed, equa-
tion (4) implies

ψ
(
d(un, un+1)

)
< ψ

(
d(un, un+1)

)
, that is, d(un, un+1) < d(un, un+1).

Therefore, we get that d(un, un+1) < d(un−1, un) for all n ∈ N. This means that there
exists limn→+∞ d(xn, xn+1) = δ > 0. If δ > 0, then from (3) and Remark 1 we get

ψ(δ) 6 F

(
ψ

(
max

{
δ, δ, δ,

δ2

1 + δ2
,

δ2

1 + δ2

})
, φ

(
max

{
δ, δ, δ,

δ2

1 + δ2
,

δ2

1 + δ2

}))
< ψ

(
max

{
δ, δ, δ,

δ2

1 + δ2
,

δ2

1 + δ2

})
= ψ(δ),

which is a contradiction. Hence limn→+∞ d(un, un+1) = 0.
Further, we show that limn→+∞ d(un, un+2) = 0. Firstly, we have α(un−1, un) > 1,

i.e., α(un−1, un+1) > 1 because T is a triangular α-admissible mapping. Therefore, we
arrive at

ψ
(
d(un, un+2)

)
= ψ

(
d(Tun−1, Tun+1)

)
6 F

(
ψ
(
m(un−1, un+1

))
, φ
(
m
(
un−1, un+1)

))
,

where

m(un−1, un+1)

= max

{
d(un−1, un+1), d(un−1, un), d(un+1, un+2),

d(un−1, un)d(un+1, un+2)

1 + d(un−1, un+1)
,
d(un−1, un)d(un+1, un+2)

1 + d(un, un+2)

}
.
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Since there exists n0 ∈ N such that for n > n0,

d(un−1, un)d(un+1, un+2)

1 + d(un−1, un+1)
6 d(un−1, un)

and

d(un−1, un)d(un+1, un+2)

1 + d(un, un+2)
6 d(un−1, un),

also, d(un−1, un)→ 0 as n→ +∞, for n > n0, we obtain

m(un−1, un+1) 6 max
{
d(un−1, un+1), d(un−1, un), d(un+1, un+2),

d(un−1, un)d(un+1, un+2)
}
,

that is,

m(un−1, un+1) 6 max
{
d(un−1, un+1), d(un−1, un), d

2(un−1, un)
}

6 max{d(un−1, un+1), d(un−1, un)
}
.

Hence, for n > n0, according to Remark 1, it follows that

ψ
(
d(un, un+2)

)
< ψ

(
max

{
d(un−1, un+1), d(un−1, un)

})
.

This amounts to say that, for n > n0,

d(un, un+2) < max
{
d(un−1, un+1), d(un−1, un)

}
.

Now, we get

lim sup
n→+∞

d(un, un+2) 6 lim sup
n→+∞

(
max

{
d(un−1, un+1), d(un−1, un)

})
= max

{
lim sup
n→+∞

d(un−1, un+1), lim sup
n→+∞

d(un−1, un)

= max
{
lim sup
n→+∞

d(un−1, un+1), 0
}

= lim sup
n→+∞

d(un−1, un+1).

Hence, we have

lim sup
n→+∞

d(un, un+2) 6 lim sup
n→+∞

d(un−1, un+1).

Suppose that
lim sup
n→+∞

d(un, un+2) = δ > 0.

Then we acquire the following:

ψ
(
lim sup
n→+∞

d(un, un+2)
)
6 F

(
ψ
(
lim sup
n→+∞

d(un, un+2)
)
, φ
(
lim sup
n→+∞

d(un, un+2)
))
,

that is,
ψ(δ) 6 F

(
ψ(δ), φ(δ)

)
< ψ(δ),

which is a contradiction. Hence, it follows that limn→+∞ d(xn, xn+2) = 0.
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In order to prove that the sequence {un} is a Cauchy sequence, we use Lemma 2.
According to Lemma 1, α(un(k), um(k)) > 1 if m(k) < n(k), then putting in (1) p =
un(k), r = um(k), we obtain

ψ
(
d(un(k)+1, um(k)+1)

)
6 F

(
ψ
(
m(un(k), um(k))

)
, φ
(
m
(
un(k), um(k)

)))
, (5)

where

m(un(k), um(k)) = max

{
d(un(k), um(k)), d(un(k), un(k)+1), d(um(k), um(k)+1),

d(un(k), un(k)+1)d(um(k), um(k)+1)

1 + d(un(k), um(k))
,

d(un(k), un(k)+1)d(um(k), um(k)+1)

1 + d(un(k)+1, um(k)+1)

}
→

k→+∞
max

{
ε, 0, 0,

0 · 0
1 + ε

,
0 · 0
1 + ε

}
= ε.

Now, since F,ψ and φ are continuous, taking limit k → +∞ in (5), and utilizing
Remark 1, we obtain

ψ(ε) 6 F
(
ψ(ε), φ(ε)

)
< ψ(ε),

which is a contradiction. Hence the sequence {un} is a Cauchy sequence. Since (M,d)
is a complete rectangular metric space, there exists a point u∗ ∈ X such that un → u∗ as
n→ +∞. If T is continuous, we get un+1 = Tun → Tu∗ as n→ +∞. Let Tu∗ 6= u∗.
Since d(un, un+1) < d(un−1, un) for all n ∈ N ∪ {0}, according to Lemma 3, we
conclude that un’s are distinct. Therefore, there exists n1 ∈ N such that u∗, Tu∗ /∈
{un}n>n1 . Further, by (iii) it follows that

d(u∗, Tu∗) 6 d(u∗, un) + d(un, un+1) + d(un+1, Tu
∗)

whenever n > n1. Taking the limit in the last inequality, it follows that d(u∗, Tu∗) = 0,
i.e., u∗ = Tu∗, which is again a contradiction.

In the case that (M,d) is α-regular, and since α(un, u∗) > 1 for all n ∈ N, from (1)
we obtain the following:

ψ
(
d(Tun, Tu

∗)
)
6 F

(
ψ
(
m(un, u

∗)
)
, φ
(
m(un, u

∗)
))
, (6)

where

m(un, u
∗) = max

{
d(un, u

∗), d(un, un+1), d(u
∗, Tu∗),

d(un, un+1)d(u
∗, Tu∗)

1 + d(un, u∗)
,
d(un, un+1)d(u

∗, Tu∗)

1 + d(un+1, Tu∗)

}
→

n→+∞
d(u∗, Tu∗).
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Passing limit n→ +∞ in (6) and using Proposition 1, the continuity of the functions F ,
ψ, and φ as well as Remark 1, it follows that if u∗ 6= Tu∗, then

ψ
(
d(u∗, Tu∗)

)
6 F

(
ψ
(
d(u∗, Tu∗)

)
, φ
(
d(u∗, Tu∗)

))
< ψ

(
d(u∗, Tu∗)

)
,

which is a contradiction. Hence, u∗ is a fixed point of T .
Now, we show that the fixed point is unique if α(p, r) > 1 whenever p, r ∈ Fix(T ).

Indeed, in this case, by the contractive condition (1), for such possible distinct fixed points
p, r, we have

ψ
(
d(p, r)

)
= ψ

(
d(Tp, Tr)

)
6 F

(
ψ
(
m(p, r)

)
, φ
(
m(p, r)

))
, (7)

where

m(p, r) = max

{
d(p, r), d(p, Tp), d(r, T r),

d(p, Tp)d(r, T r)

1 + d(p, r)
,
d(p, Tp)d(r, T r)

1 + d(Tp, Tr)

}
= max

{
d(p, r), 0, 0,

0 · 0
1 + 0

,
0 · 0
1 + 0

}
= d(p, r).

Hence, (7) becomes

ψ
(
d(p, r)

)
6 F

(
ψ
(
d(p, r)

)
, φ
(
d(p, r)

))
< ψ

(
d(p, r)

)
,

which is again a contradiction. The proof of the Theorem 3 is complete.

Remark 2. In the proof of the main theorem [7, p. 586, line 1−, Thm. 1, case 3], the
authors used the fact that rectangular metric d (see also inequality (5) on the same page)
is continuous, which is not given in the formulation of Theorem 1 in [7]. In the proof of the
same theorem (p. 585), the authors also claimed that limn→+∞ d(un, un+2) = 0, which
is not correct because we do not know whether limn→+∞ d(un, un+2) exists or not.

By taking F (x, y) = x−y in Theorem 3, we obtain the following result as a corollary.

Corollary 4. Let (M,d) be a complete rectangular metric space, and let T : M → M
be a triangular α-admissible mapping. Assume that there exist ψ, φ ∈ Ψ such that, for
p, r ∈M ,

α(p, r) > 1 implies ψ
(
d(Tp, Tr)

)
6 ψ

(
m(p, r)

)
− φ

(
m(p, r)

)
,

where

m(p, r) = max

{
d(p, r), d(p, Tp), d(r, T r),

d(p, Tp)d(r, T r)

1 + d(p, r)
,
d(p, Tp)d(r, T r)

1 + d(Tp, Tr)

}
.

Also suppose that the following assertions hold:

(i) there exists p0 ∈M such that α(p0, Tp0) > 1;
(ii) T is continuous or (M,d) is α-regular.

Then T has a fixed point. Moreover, if for all p, r ∈ F (T ), we have α(p, r) > 1, then the
fixed point is unique.
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Taking ψ(t) = 1 for all t ∈ [0,+∞) in Corollary 4, the following useful corollary is
obtained.

Corollary 5. Let (M,d) be a complete rectangular metric space, and let T : M → M
be a triangular α-admissible mapping. Assume that there exists φ ∈ Ψ such that, for
p, r ∈M ,

α(p, r) > 1 implies d(Tp, Tr) 6 m(p, r)− φ
(
m(p, r)

)
,

where

m(p, r) = max

{
d(p, r), d(p, Tp), d(r, T r),

d(p, Tp)d(r, T r)

1 + d(p, r)
,
d(p, Tp)d(r, T r)

1 + d(Tp, Tr)

}
.

Suppose also that the following assertions hold:

(i) there exists p0 ∈M such that α(p0, Tp0) > 1;
(ii) T is continuous or (M,d) is α-regular.

Then T has a fixed point. Moreover, if for all p, r ∈ F (T ), we have α(p, r) > 1, then the
fixed point is unique.

Consider φ(t) = (1− q)t for 0 < q < 1 in Corollary 5, then we obtain the following
result.

Corollary 6. Let (M,d) be a complete rectangular metric space, and let T : M → M
be a triangular α-admissible mapping such that, for p, r ∈M ,

α(p, r) > 1 implies d(Tp, Tr) 6 q ·m(p, r),

where

m(p, r) = max

{
d(p, r), d(p, Tp), d(r, T r),

d(p, Tp)d(r, T r)

1 + d(p, r)
,
d(p, Tp)d(r, T r)

1 + d(Tp, Tr)

}
.

Also suppose that the following conditions are contended:

(i) there exists p0 ∈M such that α(p0, Tp0) > 1;
(ii) T is continuous or (M,d) is α-regular.

Then T has a fixed point. Moreover, if for all p, r ∈ F (T ), we have α(p, r) > 1, then the
fixed point is unique.

3 Application to a dynamical programming

This section aims to apply our results to solve the existence and uniqueness of the solution
of the dynamic programming problem. In particular, the problem of dynamic program-
ming related to multistage process reduces to solving the existence and uniqueness of the
solution of the following functional equation:

q(x) = sup
y∈D

{
f(x, y) +G

(
x, y, q

(
ρ(x, y)

))}
for all x ∈W, (8)
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where ρ : W × D → W , f : W × D → R and G : W × D × R → R. We suppose
that W ⊆ U is a state space, D ⊆ V is a decision space, U and V are Banach spaces.
Let B(W ) denote the set of all bounded real valued functions on W , and for an arbitrary
h ∈ B(W ), define ||h||∞ = supx∈W |h(x)|. Clearly, the pair (B(W ), ‖·‖∞) is a Banach
space. For details, see [18, 19].

In fact, the distance in B(W ) is given by

d∞(h, k) = sup
x∈W

∣∣h(x)− k(x)∣∣ for all h, k ∈ B(W ).

Define T : B(W )→ B(W ) by

T (h)(x) = sup
y∈D

{
f(x, y) +G

(
x, y, h

(
ρ(x, y)

))}
for all h ∈ B(W ), x ∈W. (9)

Obviously, T is well-defined if the functions f and G are bounded.

Theorem 4. Let T be an operator defined by (9), and suppose that the following condi-
tions hold:

(i) G :W ×D × R→ R and f :W ×D → R are continuous and bounded;
(ii) there exist F ∈ C and ψ, φ ∈ Ψ such that ψ(t) = t for all t ∈ [0,∞), and∣∣G(x, y, h(ρ(x, y)))−G(x, y, k(ρ(x, y)))∣∣ 6 F

(
ψ
(
m(h, k)

)
, φ
(
m(h, k)

))
,

where

m(h, k) = max

{
d∞(h, k), d∞(h, Th), d∞(k, Tk),

d∞(h, Th)d∞(k, Tk)

1 + d∞(h, k)
,
d∞(h, Th)d∞(k, Tk)

1 + d∞(Th, Tk)

}
for all h, k ∈ B(W ), x ∈W and y ∈ D.

Then the functional equation (8) has a unique solution.

Proof. Let λ be an arbitrary positive number, x ∈ W and h1, h2 ∈ B(W ), then there
exist y1, y2 ∈ D such that

T (h1)(x) < f(x, y1) +G
(
x, y1, h1

(
ρ(x, y1)

))
+ λ,

T (h2)(x) < f(x, y2) +G
(
x, y2, h2

(
ρ(x, y2)

))
+ λ,

T (h1)(x) > f(x, y2) +G
(
x, y2, h1

(
ρ(x, y2)

))
,

T (h2)(x) > f(x, y1) +G
(
x, y1, h2

(
ρ(x, y1)

))
,

which yields

T (h1)(x)− T (h2)(x)
< G

(
x, y1, h1

(
ρ(x, y1)

))
−G

(
x, y1, h2

(
ρ(x, y1)

))
+ λ

6
∣∣G(x, y1, h1(ρ(x, y1)))−G(x, y1, h2(ρ(x, y1)))∣∣+ λ.
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In the same manner, we acquire

T (h2)(x)− T (h1)(x) 6
∣∣G(x, y1, h2(ρ(x, y1)))−G(x, y1, h1(ρ(x, y1)))∣∣+ λ.

Since λ is arbitrary, we conclude∣∣T (h1)(x)− T (h2)(x)∣∣ 6 ∣∣G(x, y1, h1(ρ(x, y1)))−G(x, y1, h2(ρ(x, y1)))∣∣.
This amounts to say that

ψ
(
d∞
(
T (h1), T (h2)

))
= d∞

(
T (h1), T (h2)

)
6 F

(
ψ
(
m(h1, h2)

)
, φ
(
m(h1, h2)

))
,

where

m(h1, h2) = max

{
d∞(h1, h2), d∞(h1, Th1), d∞(h2, Th2),

d∞(h1, Th1)d∞(h2, Th2)

1 + d∞(h1, h2)
,
d∞(h1, Th1)d∞(h2, Th2)

1 + d∞(Th1, Th2)

}
.

Lastly, we specify α : B(W )×B(W )→ [0,∞) such that

α(h1, h2) =

{
1, h1, h2 ∈ B(W ),

0 otherwise.

Evidently, α(h1, h2) = 1 and α(T (h1), T (h2)) = 1 for all h1, h2 ∈ B(W ). This
endorses that T is a triangular α-admissible mapping. Hence, due to Theorem 3, T has
a unique fixed point h∗ ∈ B(W ), that is, h∗ is a unique solution of the functional
equation (8). This completes the proof.

4 Conclusion

This article is devoted to addressing some weaknesses of the main results introduced
in [7]. Antithetical to the results in [7], we used only one function α :M×M → [0,+∞)
instead of two α and η as used in [8, Defs. 2.3, 3.1]. We also dropped the property of
Hausdorffness of the rectangular metric space (M,d) and the continuity of the mapping d.
Using our new approach, we proved that a Picard sequence is Cauchy in the framework of
rectangular metric spaces. Our obtained results complement and enrich several methods in
the existing state-of-art. Thereafter, we apply our results to study a dynamic programming
problem associated with a multistage process to affirm the applicability of the obtained
results.
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