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Abstract: In this paper, we obtain the results of coincidence and common fixed points in b-metric
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1. Introduction

The first result of a fixed point for quasi-contractive mappings was presented by Lj.
Ćirić [1] in 1974. The result of Ćirić is the most general result with linear comparison
function in metric fixed-point theory (see [2,3]).

Existence and uniqueness of fixed point for quasi-contractive mapping with nonlinear
comparison function on metric spaces, considered by J. Daneš [4], A. A. Ivanov [5], I.
Arand-elović, M. Rajović and V. Kilibarda [6] and M. Bessenyei [7].

In the paper [8], S. Aleksić et al. proved a fixed-point theorem for quasi-contractive
mappings defined by linear quasi-contractive conditions on b-metric spaces.

The results of common fixed points as a generalization result of Ćirıć was obtained
in [9] and in [10] with linear and nonlinear comparison functions, respectively.

The result of Ćirić [1] was generalized for multivalued quasi-contractive mappings
by B. Fisher [11] (for linear cases) and by Ćirić and Ume [12] (for nonlinear cases). Further
extension of these results was presented in [13].

A common fixed-point result for single-valued nonlinear quasi-contractions was pre-
sented by Z. D. Mitrović et al [14].

The notion of common fixed points for a hybrid pair of single-valued and multivalued
mappings was introduced by S. L. Sigh, K. S. Ha, and Y. J. Cho [15]. Further important
common fixed-point results for mappings of this type were presented in [16–18]. Theorems
for the existence of a solution on Voltera integral inclusion and certain systems of functional
equations arising in dynamic programming can be found in [19].

In this article, we give the results on the existence of a point of coincidence and a com-
mon strict fixed point for a hybrid pair of single-valued and multivalued mappings defined
in b-metric spaces, which satisfy quasi-contractive inequality with nonlinear compari-
son function. Our results extend and generalize the results presented in [1,4–6,11–14].
Finally, we give an application of our results in the topological theory of set-valued
dynamical systems.
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2. Preliminaries

The concept of b-metric space was introduced by I. A. Bakhtin [20] and S. Czerwik [21].

Definition 1. Let X be a nonempty set, d : X× X→ [0,+∞) and s ∈ [0,+∞) such that for all
x, y, z ∈ X:

(1b) d(x, y) = 0 if and only if x = y;
(2b) d(x, y) = d(y, x);
(3b) d(x, z) ≤ s[d(x, y) + d(y, z)].

A triplet (X, d, s) is called a b-metric space.

Some results in b-metric spaces in the last ten years can be seen in [22–38].
A b-metric space can is a topological space with the topology induced with family sets

{Bn(x) : n = 1, 2, . . .} as a base of neighborhood filter of the point x ∈ X. The ball {Bn(x)}
is defined by

Bn(x) = {y ∈ X : d(x, y) <
1
n
}.

We call the sequence (xn) ⊆ X Cauchy if for every ε > 0, there exists n0 ∈ N such that
it holds d(xn, xm) < ε for all m, n ≥ n0.

A b-metric space (X, d, s) is complete if each Cauchy sequence converges.
Let 2X and B(X) denote the family of all nonempty sets and all nonempty bounded

subsets of X, respectively.
The function δ : B(X)×B(X)→ [0,+∞) defined by

δ(P, Q) = sup{d(p, q) : p ∈ P, q ∈ Q},

for any P, Q ∈ B(X).
The δ({p}, {q}), δ({p}, Q) and δ(P, {q}) we denote by δ(p, q), δ(p, Q) and δ(P, q)

respectively.
From definition of δ, it follows that:

(1) δ(P, Q) ≥ 0;
(2) δ(P, Q) = δ(Q, P);
(3) δ(P, R) ≤ s[δ(P, Q) + δ(Q, R)],

for any P, Q, R ∈ B(X).
The diam(P) denotes the diameter of P ⊆ X, defined by

diam(P) = δ(P, P).

Let X and Y be nonempty sets and F : X → 2Y, g : X → Y. If for some x ∈ X there
exists y ∈ Fx such that y = g(x), then x is a coincidence point of the multivalued function
F and the single-valued function g and y is their point of coincidence.

An element x0 ∈ X is a fixed point of map F if x0 ∈ F(x0).
If F(x0) = {x0} then x0 is a strict fixed point (or a stationary point) of F.

Definition 2. Let X be an arbitrary set, F : X → 2X and g : X → X. The hybrid pair of
multivalued function F and single-valued function g commute in x ∈ X if F(gx) = g(Fx). The F
and g are weakly compatible if F and g commute at their coincidence points.

Lemma 1. Let X be an arbitrary set, F : X → 2X and g : X → X be hybrid pair of weakly
compatible functions. If F and g have a unique point of coincidence z ∈ X i.e., there exists x ∈ X
such that z ∈ Fx and gx = z then z is unique common fixed point of F and g.

Proof. Suppose that there exists unique z ∈ X such that z ∈ Fx and gx = z, for some x ∈ X.
Then Fz = g(Fx) because F and g commute at x. This implies that g(z) ∈ F(z). Therefore,
z = gz because z is unique point of coincidence.
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Let I ⊆ R be an open interval. Function ϕ : I → R is upper semicontinuous if

limt→r ϕ(t) < r,

for any r ∈ I. By Φ we denote the family functions φ : [0,+∞)→ [0,+∞) such that:

(i) φ(0) = 0;
(ii) φ(t) < t for all t > 0;
(iii) limt→+∞(t− φ(t)) = +∞.

Let

Φ1 = {φ ∈ Φ : limu→r+φ(u) < r for r > 0 and ϕ is monotone nondecreasing},

Φ2 = {φ ∈ Φ : limt→rφ(t) < r for any r > 0}.

We have Φ1 ⊆ Φ2. Indeed, if ϕ is monotone nondecreasing, then limt→r+ϕ(t) ≤
ϕ(r) < r.
The following lemmas were proved in [6].

Lemma 2 ([6]). If φ ∈ Φ2 then there exists θ ∈ Φ1 such that

φ(t) ≤ θ(t) < t,

for each t > 0.

Lemma 3 ([6]). Let ϕ1, . . . , ϕn ∈ Φ1. Then there exists ψ ∈ Φ1 such that

ϕk(x) ≤ ψ(x) < x,

for all k ∈ {1, . . . , n} and x > 0.

We also need the following result, proved by J. Jachymski and I. Jóźwik [39].

Lemma 4 ([39]). Assume that ψ ∈ Φ is upper semicontinuous function. Then there exists a
continuous and nondecreasing function ϕ ∈ Φ such that ψ(t) ≤ ϕ(t) for all t > 0.

Remark 1. By Lemma 4, we learn that ϕ ∈ Φ1 because ϕ is continuous.

3. Main Results

In this section, we consider a new type of multivalued quasi-contractive mapping
with nonlinear comparison functions. We first give the following definition.

Definition 3. Let X and Y be arbitrary sets, g : X → Y be single-valued and F : X → 2Y be
a multivalued function such that F(X) ⊆ g(X) and (xn) ⊆ X sequence such that gxi+1 ∈ Fxi.
Then sequence (yn) ⊆ Y defined by yi = gxi is called a Jungck sequence of hybrid pair F and g
with an initial point x0.

Now we present our main result.

Theorem 1. Let X be a nonempty set and (Y, d, s) be a b-metric space. Let F : X → B(Y) be
multivalued function and g : X → Y a single-valued function. Suppose that F(X) ⊆ g(X) and
that g(X) is a complete subspace of Y. If there exist the functions ϕi : [0,+∞)→ [0,+∞), such
that sϕi ∈ Φ2, i = 1, 2, 3, 4, 5 and

δ(Fx, Fy) ≤ max{ϕ1(δ(gx, gy)), ϕ2(δ(gx, Fx)), ϕ3(δ(gy, Fy)), ϕ4(δ(gx, Fy)), ϕ5(δ(Fx, gy)}, (1)
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for any x, y ∈ X, then there exists the unique point of coincidence z ∈ Y of F and g and z =
limn→+∞ yn, where (yn) is Jungck sequence defined by F and G.

Additionally, if F and g are weakly compatible and X = Y, then z is the unique common strict
fixed point of F and g.

Proof. From Lemma 2, it follows that there exist functions ϕ∗k : [0,+∞) → [0,+∞) such
that sϕ∗k ∈ Φ1 and

ϕk(t) ≤ ϕ∗k (t) < t,

for each t > 0, k = 1, 2, 3, 4, 5. From Lemma 3 follows that there exists a real function
ϕ0 : [0,+∞)→ [0,+∞) such that sϕ0 ∈ Φ1 and

ϕ∗k (t) ≤ ϕ0(t) <
t
s

, k = 1, 2, 3, 4, 5, for each t > 0.

Hence, for every x, y ∈ X we obtain

δ(Fx, Fy) ≤ max{ϕ0(δ(gx, gy)), ϕ0(δ(gx, Fx)), ϕ0(δ(gy, Fy)), ϕ0(δ(gx, Fy)), ϕ0(δ(Fx, gy))}. (2)

A mapping ψ0 : [0,+∞)→ [0,+∞) defined by

ψ(t) =
t + ϕ0(t)

2

is upper semicontinuous. Additionally, we have sψ ∈ Φ1 because sϕ0 ∈ Φ1. By Lemma 4,
we obtained that there exists continuous function ϕ such that sϕ ∈ Φ1 and

δ(Fx, Fy) ≤ max{ϕ(δ(gx, gy)), ϕ(δ(gx, Fx)), ϕ(δ(gy, Fy)), ϕ(δ(gx, Fy)), ϕ(δ(Fx, gy))}. (3)

for every x, y ∈ X. It follows that for any x, y ∈ X we have

δ(Fx, Fy) ≤ ϕ(max{δ(gx, gy), δ(gx, Fx), δ(gy, Fy), δ(gx, Fy), δ(Fx, gy)}),

because ϕ is monotone nondecreasing. Thus, we can assume that ϕj = ϕ for j = 1, 2, 3, 4, 5
and sϕ ∈ Φ1. Let x0 ∈ X be arbitrary and let (xn) be an arbitrary sequence such that
gxi+1 ∈ Fxi, for every i = 0, 1, 2, . . . and (yn) arbitrary corresponding Jungck sequence with
initial point x0. Let d0 = δ(gx0, Fx0). We will show that it exists r0 ∈ (0,+∞) such that

r0 − sϕ(r0) ≤ d0 < r− sϕ(r), (4)

for r > r0. Let D = {r | for all t > r, t− sϕ(t) > d0}. Since

r− ϕ(r)→ +∞ as r → +∞

the set D is nonempty. If q1 ∈ D and q2 > q1 we have q2 ∈ D. Therefore, D is an unbounded
set. Let

r0 = inf D.

Let n ∈ N then there exists rn /∈ D such that r0 − 1/n < rn. So,

r0 > rn > r0 − 1/n such that rn − sϕ(tn) ≤ d0.

Since ϕ is nondecreasing, we have

sϕ(rn) ≤ sϕ(r0).

So,
rn − sϕ(r0) ≤ d0.
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Taking a limit as n→ +∞, we obtain

r0 − sϕ(r0) ≤ d0.

For any j ≥ 0, define

On(xj) = {y ∈ Fxk | k = j, j + 1, j + 2, . . . , j + n}

and
O(xj) = {y ∈ Fxk | k = j, j + 1, j + 2, . . .}.

Next, we prove that for all positive integers k, n there holds

diam(On(xk)) ≤ ϕ(diam(On+1(xk−1))). (5)

Since ϕ is monotone nondecreasing, it commutes with max for i, j ∈ {k, . . . , k + n},
we have

δ(Fxi, Fxj) ≤ ϕ(max{δ(gxi, gxj), δ(gxi, Fxi), δ(gxj, Fxj), δ(gxi, Fxj), δ(gxj, Fxi)})
= ϕ(max{δ(Fxi−1, Fxj−1), δ(Fxi−1, Fxi), δ(Fxj−1, Fxj), δ(Fxi−1, Fxj), δ(Fxj−1, Fxi)})
≤ ϕ(diam(On+1(xk−1))).

By induction, from (5) we obtain

δ(On(xk)) ≤ ϕl(diam(On+l(xk−l))). (6)

For i, j ∈ {1, . . . , n} we have f xi, f xj ∈ On−1(x1). Therefore, by (5) we have

d(Fxi, Fxj) ≤ diam(On−1(x1)) ≤ ϕ(diam(On(x0))) < diam(On(x0)).

Therefore, there exists k ∈ {1, . . . , n}, such that

diam(On(x0)) = δ(Fx0, Fxk) ≤ s[δ(Fx0, Fx1) + δ(Fx1, Fxk)] ≤ sd0 + sdiam(On−1(x1))

≤ sd0 + sϕ(diam(On(x0)).

Hence we obtain

diam(On(x0))− sϕ(diam(On(x0))) ≤ d0

which implies diam(On(x0)) ≤ r0. So,

diam(O(x0)) = sup
n

diam(On(x0)) ≤ r0. (7)

So, we conclude that each Jungck sequence defined by F and g is bounded. We
will show that the corresponding Jungck sequence (yn) is a Cauchy. Let m > n, then
Fxn, Fxm ⊆ Om−n+1(xn), using (6) (with l = n) and (7) we obtain

d(yn, ym) ≤ δ(Fxn, Fxm) ≤ diam(Om−n+1(xn)) ≤ ϕn(diam(Om+1(x0))) ≤ ϕn(r0)→ 0,

as m, n→ ∞. Since F(X) ⊆ g(X) and g(X) is complete, we obtain that (yn) is convergent.
Let y ∈ X, such that limn→+∞ yn = y. Since y ∈ G(X), we conclude that there exists z ∈ X
such that y = gz. Let us prove that y ∈ F(z). Suppose that δ(y, Fz) > 0. By (1) we have

δ(y, Fz) ≤ δ(y, yn+1) + δ(yn+1, Fz) (8)

≤ δ(y, yn+1) + δ(Fxn, Fz)

≤ δ(y, yn+1) + ϕ(max{δ(yn, y), δ(yn, Fxn), δ(y, Fz), δ(yn, Fz), δ(y, Fxn)}).



Mathematics 2022, 10, 856 6 of 10

By (8) we obtain
limδ(yn, Fxn) ≤ limδ(Fxn−1, Fxn) = 0 (9)

and

limδ(y, Fxn) ≤ lim[δ(y, yn) + δ(yn, Fxn)] ≤ limδ(y, yn) + limδ(Fxn−1, Fxn) = 0.

Furthermore, we have

limδ(yn, Fz) ≤ lim[δ(yn, y) + δ(y, Fz)] ≤ limδ(yn, y) + limδ(y, Fz) = δ(y, Fz). (10)

From (8), (9) and (10) it follows

δ(y, Fz) ≤ limδ(y, yn+1) + limϕ(max{δ(yn, y), δ(yn, Fxn), δ(y, Fz), δ(yn, Fz), δ(y, Fxn)}) (11)

≤ ϕ(max{0, 0, δ(y, Fz), δ(y, Fz), 0}).

Thus, we have
d(y, Fz) ≤ ϕ(d(y, Fz)),

which is a contradiction. Hence δ(y, Fz) = 0. Therefore, {y} = Fz.

Let is show uniqueness. Suppose

Fz = {g(z)} = {y} and F{z′} = {gz′} = {y′}.

Then by (1) we have

d(y, y′) = δ(Fz, Fz′) (12)

≤ ϕ(max{d(gz, gz′), d(gz, Fz), d(gz′, Fz′), d(gz, Fz′), d(gz′, Fz)})
= ϕ(max{d(y, y′), 0, 0, d(y, y′), d(y′, y)}) = ϕ(d(y, y′)) < d(y, y′).

So, d(y, y′) = 0, the Jungck sequence converges uniquely to the point of coincidence.
If X = Y and F and g are weakly compatible, using Lemma 1, we obtain that y = z unique
common fixed point of F and g.

Example 1. Let X = [0,+∞), Y = [0,+∞), s = 2 and the mappings

d : Y×Y → [0,+∞), F : X → B(Y), g : X → X

defined by
d(x, y) = (x− y)2, F(x) =

[
0,

x
2

]
, g(x) = 2x.

Suppose that the functions ϕi : [0,+∞)→ [0,+∞), i = 1, 2, 3, 4, 5 defined by

ϕi(t) =
t

i + 2
, i = 1, 2, 3, 4, 5.

Then we have:

(i) F(X) = [0,+∞) and g(X) = [0,+∞), therefore F(X) ⊆ g(X);
(ii) g(X) is a complete subspace of Y;
(iii) ϕi : [0,+∞)→ [0,+∞) and sϕi(t) = 2t

i+2 , so sϕi ∈ Φ2, i = 1, 2, 3, 4, 5;

(iv) δ(Fx, Fy) = δ([0, x
2 ], [0, y

2 ]) = |x−y|
2 , ϕ1(δ(gx, gy) = ϕ1(2|x − y|) = 2|x−y|

3 , therefore,
condition (1) is satisfied;

(v) X = Y;
(vi) F(gx) = F(2x) = [0, x], g(Fx) = g([0, x

2 ]) = [0, x], so F and g are weakly compatible.
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Therefore, all the assumptions of Theorem 1 are satisfied and we conclude that F and g have a unique
coincidence point.

Example 2. Let X = Y = [0,+∞), s = 2 and the mappings

d : X× X → [0,+∞), F : X → B(Y), g : X → X

defined by d(x, y) = (x− y)2, Fx = { x
3k : k ∈ N}, gx = 3x. Let the functions ϕi : [0,+∞) →

[0,+∞) defined by ϕi(t) = t
2 , i = 1, 2, 3, 4, 5. Then we have:

(i) F(X) ⊆ [0,+∞), x ∈ [0,+∞) and g(X) = [0,+∞), therefore, F(X) ⊆ g(X);
(ii) g(X) is a complete subspace of Y;
(iii) ϕi : [0,+∞)→ [0,+∞) and sϕi ∈ Φ2;
(iv)

δ(Fx, Fy) = δ({ x
3k : k ∈ N}, { y

3k : k ∈ N}) = max{ x2

9
,

y2

9
}

≤ max{9x2

2
,

9y2

2
} = max{ϕ4(δ(gx, Fy)), ϕ5(δ(gy, Fx))}

≤ max{ϕ1(δ(gx, gy)), ϕ2(δ(gx, Fx)), ϕ3(δ(gy, Fy)), ϕ4(δ(gx, Fy)), ϕ5(δ(Fx, gy)}

therefore, condition (1) is satisfied;
(v) X = Y;
(vi) F(gx) = F(3x) = { x

3k−1 : k ∈ N} = g(Fx), therefore F and g are weakly compatible.

So, F and g have a unique coincidence point.

Remark 2. Theorem 1 extended earlier results for nonlinear contractions on metric space ob-
tained by J. Daneš [4], A. A. Ivanov [5], I. Arand-elović, M. Rajović and V. Kilibarda [6] and M.
Bessenyei [7], common fixed-point results of K. M. Das, K. V. Naik [9] and C. Di Bari and P.
Vetro [10]. Please note that contractive condition (1) was defined earlier by several authors; see for
example [14].

4. The Common Endpoints for Hybrid Dynamical System

For an ordered pair (X, T) we say that it is a set-valued dynamical system, where X is
given space and T : X → 2X a multivalued map.

If T is a single-valued mapping, we obtain the usual dynamical system.
If x is a strict fixed point of T, we say that x is an endpoint of dynamical system.
A sequence (xn) in X defined by xn ∈ T(xn−1) is called a dynamical process or

trajectory; see more about dynamical systems in the famous monographs [40,41].

Definition 4. Let X be a nonempty set, T : X → 2X and g : X → X. Then (X, T, g) is a hybrid
dynamical system.

For a unique point of coincidence for T and g, we say that the endpoint (or stationary point)
for hybrid dynamical system (X, T, g).

A sequence (xn) in X defined by xn ∈ T(xn−1) is called a dynamical process or trajectory of
the hybrid system (X, T, g).

From Theorem 1, we obtained the following result.

Theorem 2. Let (X, F, g) be hybrid dynamical system, where (X, d, s) is a complete b-metric space
and F : X → B(X). Suppose that F(X) ⊆ g(X) and that g(X) is a complete subspace of Y. If
there exists ϕi ∈ Φ2, i = 1, 2, 3, 4, 5 such that

δ(Fx, Fy) ≤ max{ϕ1(d(gx, gy)), ϕ2(δ(gx, Fx)), ϕ3(δ(gy, Fy)), ϕ4(δ(gx, Fy)), ϕ5(δ(F(x, gy))}, (13)
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for any x, y ∈ X, then hybrid dynamic system (X, F, g) has an endpoint which is the limit of every
dynamical process defined by F and g.

Therefore, from Theorem 1 we obtain the result for a dynamical system.
Let X be a Hausdorff topological linear space. If there exists (see Köte [42]) a continuous

function ‖.| : X→ [0,+∞) such that:

(1) ‖x| ≥ 0;
(2) ‖x| = 0 if and only if x = 0;
(3) ‖tx| = |t|‖x|;
(4) there exists s ≥ 1 such that ‖x + y| ≤ s(‖x|+ ‖y|),
for all x, y ∈ X, t ∈ R, then (X, ‖.|, s) is the quasi-normed space. Mapping ‖.| is said to be a
quasi-norm.

If (X, ‖.|, s) is the quasi-normed space then (X, d, s) is b-metric space, where d(x, y) =
‖.| for all x, y ∈ X. If (X, d, s) is complete then (X, ‖.|, s) is a quasi-Banach space.

Let I ⊆ R be an interval, and S be a set of functions defined on I, X ⊆ S, ‖.| : X →
[0,+∞) and s ≥ 1 such that (X, ‖.|, s) is quasi-Banach space, and f : X × I → X. Then
equation (see [43]),

ẋ(t) = f (x(t), u(t)), (14)

where u : I → I is the known control function, x : X → X is the unknown Gateaux differ-
entiable function (so-called state function) and the ẋ Gateaux derivate of x is equivalent
with differential inclusion

ẋ(t) ∈ F(x(t)),

for some F : X → 2X. Therefore, for g(x) = ẋ from Theorem 2 we obtained sufficient
conditions for the existence of an endpoint of a hybrid dynamical system (X, F, g), which
is also a solution of (14).

5. Conclusions

We obtained new results for the points of coincidence and fixed points in the hybrid
pair of multivalued and single-valued mappings in b-metric spaces. We introduced five
new nonlinear comparison functions. Our results generalize and improve several recent
results in the literature. We also present the application of the obtained results in dynamical
systems. We believe that our main result can be a starting point for new research in other
generalized metric spaces.
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