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GENERALIZED AVERAGED GAUSSIAN FORMULAS FOR
CERTAIN WEIGHT FUNCTIONS

RADA M. MUTAVDŽIĆ1

Abstract. In this paper we analyze the generalized averaged Gaussian quadrature
formulas and the simplest truncated variant for one of them for some weight func-
tions on the interval [0, 1] considered by Milovanović in [10]. We shall investigate
internality of these formulas for the equivalents of the Jacobi polynomials on this
interval and, in some special cases, show the existence of the Gauss-Kronrod quad-
rature formula. We also include some examples showing the corresponding error
estimates for some non-classical orthogonal polynomials.

1. Introduction

Consider the l-point Gauss quadrature formula

QG
l (f) =

l∑
i=1

w
(l)
i f(x(l)

i )

on the interval [a, b] with respect to a weight function w for the integral

I(f) =
∫ b

a
f(x)w(x)dx.

It has the highest possible degree of exactness, 2l − 1, and

QG
l (p) = I(p), p ∈ P2l−1,

where Pm denotes the space of polynomials of degree up to m.

Key words and phrases. Gauss quadrature, Gauss-Kronrod quadrature, averaged Gaussian formu-
las, truncations of averaged Gaussian formulas.
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To estimate the error (I −QG
l )(f), one can use the difference (A−QG

l )(f), where A
is some quadrature formula of degree greater than 2l−1. Any such quadrature formula
A requires at least l + 1 additional nodes, so it will have at least 2l + 1 nodes. One
classical way for constructing a (2l + 1)-node formula A for certain weight functions is
Gauss-Kronrod quadrature formula with degree of exactness at least 3l+1. The Gauss-
Kronrod formulas are of optimal degree, given that the nodes of G(l)

w are included.
For some weight functions on compact intervals, such as the Legendre weight function
w(x) = 1 on [−1, 1], the Gauss-Kronrod formulas have real zeros inside the interval
that interlace with the nodes of the Gauss formula and have positive weights. The
polynomials of degree l +1 that vanish in the l +1 additional nodes are called Stieltjes
polynomials. However, a real Gauss-Kronrod extension of a Gauss formula may not
exist in general. This happens e.g. for the Gauss-Laguerre and Gauss-Hermite cases
(see [6]), as well as for the Jacobi weights wα,β(t) = (1 − t)α(1 + t)β for min{α, β} ⩾ 0
and max{α, β} > 5/2 if l is large enough (see [13]).

Another approach (see [7, 8, 11]) is to construct a new quadrature formula Ql+1 for
the functional

Iθ(f) =
∫ b

a
f(x)w(x)dx − θQG

l (f),

for a given θ ∈ R, and then use the stratified quadrature formulas Q2l+1 = θQG
n +Ql+1

to estimate the error QG
n . As a special case, Laurie in [8] introduced the anti-Gaussian

quadrature formula QA
l+1

(I − QA
l+1)(p) = −(I − QG

l )(p), p ∈ P2l+1.

The averaged formula
QL

2l+1 = 1
2(QG

l + QA
l+1),

also introduced in [8], is of the stratified type and has the degree of exactness at least
2l+1. In the case of the Laguerre and Hermite weight functions, more general averaged
formulas 1

2+γ
((1+γ)QG

n +QA
l+1) with γ > −1 were considered in [4]. Here γ is chosen so

that the degree of exactness is as large as possible. These modified formulas, denoted
by QGF

2l+1, are also stratified extensions. Moreover, among all stratified extensions,
these are the unique formulas with the maximum degree of exactness.

Recently, by following the results in [12] which characterize positive quadrature
formulas, Spalević [16] introduced a new (2l + 1)-node quadrature formula, called
generalized averaged Gaussian quadrature formula. Here we denote it by QS

2l+1. In
the cases of Laguerre and Hermite weight functions, this formula turns out to coincide
with QGF

2l+1. The generalized averaged Gaussian formula has a degree of exactness at
least 2l + 2, but for one class of weight functions the degree of exactness is 3n + 1
and hence the formula coincides with Gauss-Kronrod formula (see [18]). Further,
the truncated generalized averaged Gauss formulas Q

(l−r)
2l−r+1 are introduced in [14],

where l ⩾ 2 and r = 1, 2, . . . , l − 1. These formulas have fewer nodes and the same
degree of exactness as the generalized averaged Gauss formulas. Hence, the truncated
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generalized averaged Gauss formulas can be useful as substitutes when (real) Gauss-
Kronrod formula do not exist.

According to [8,16] and [1], the generalized averaged Gaussian formulas and trun-
cated variant for one of them have real nodes with positive weights, and only the two
outermost nodes may be exterior. Thus it remains to analyze when these formulas are
internal, i.e., all nodes are interior. This property is important when the integrand f
is defined only on the interval [a, b] and has also been investigated in [1, 2] and [3].

In this paper, we are analyzing mentioned averaged formulas for some weight func-
tions recently considered by Milovanović in [10]. In two of these cases the orthogonal
polynomials can be expressed in terms of the Jacobi polynomials on [0, 1]. For these,
we will consider internality of the averaged formulas. In some simple cases of these
polynomials, the generalized averaged Gaussian formulas coincide with the Gauss-
Kronrod formula. The other two cases yield non-classical polynomials on [0, 1], and in
these cases we will give examples showing the error estimates for the Gauss formula.

2. The Extraction of Orthogonal Polynomials from Generating
Function for Reciprocal of Odd Numbers

Let {πl(x)}∞
l=0 be a sequence of monic polynomials orthogonal on [a, b] with respect

to the weight function w(x). These polynomials satisfy the three-term recurrence
relation
(2.1) πl+1(x) = (x − αl)πl(x) − βlπl−1(x), l = 0, 1, . . . ,

with π0(x) = 1 and π−1(x) = 0. Here αl and βl are the recurrence coefficients and it
is convenient to define β0 =

∫ b
a w(x)dx. The same recurrence coefficients occur in the

Jacobi continued fraction associated with the weight function w(x),

F (x) =
∫ b

a

w(t)
x − t

dt ∼ β0

x − α0−
β1

x − α1−
. . . ,

which is known as the Stieltjes transform of the weight function w(x). The l-th
convergent of this continued fraction is

β0

x − α0−
β1

x − α1−
. . .

βl−1

x − αl−1
= σl(x)

πl(x) ,

where σl(x) are the associated polynomials,

σl(x) =
∫ b

a

πl(x) − πl(t)
x − t

w(t)dt, l ⩾ 0.

These polynomials satisfy the same recurrence relation (2.1), where σ0 = 0 and
σ−1 = −1 (see [9, pp. 111–114]).

Recently Shashikala [15] considered the series

T (x) = 1 + 1
3x + 1

5x2 + · · · + 1
2l + 1xl + · · · .
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Using the regular continued fraction,

(2.2) T (x) = 1
1+

−1
3x

1+
− 4

15x

1+ · · ·
− l2

4l2−1x

1+ · · · ,

and taking even and odd convergents, he obtained four sequences of monic orthogonal
polynomials {Q

(ν)
l (x)}∞

l=0, ν = 1, 2, 3, 4. These polynomials satisfy the three-term
recurrence relation (2.1), with Q

(ν)
0 (x) = 1 and Q

(1)
1 (x) = x − 1

3 , Q
(2)
1 (x) = x − 3

5 ,
Q

(3)
1 (x) = x − 4

15 , Q
(4)
1 (x) = x − 11

21 . The first two polynomials, extracted from the
denominators of (2.2), are classical orthogonal polynomials (cf. [9, pp. 121–146]),
whereas the other two, extracted from the numerators, are non-classical polynomials.

Let us consider the polynomials p
(1)
l (x) and p

(2)
l (x) orthogonal on [0, 1] with respect

to the weight functions
(2.3) w(1)(x) = (1 − x)λ−1/2/

√
x and w(2)(x) =

√
x(1 − x)λ−1/2, λ > −1/2.

These polynomials satisfy the relation (2.1) with the recurrence coefficients (see [10])

a
(1)
0 = 1

2(λ + 1) , a
(1)
l = 4l2 + 4λl + λ − 1

2(λ + 2l − 1)(λ + 2l + 1) ,

b
(1)
0 =

√
πΓ(λ + 1/2)
Γ(λ + 1) , b

(1)
l = l(2l − 1)(λ + l − 1)(2λ + 2l − 1)

4(λ + 2l − 2)(λ + 2l − 1)2(λ + 2l) ,(2.4)

and

a
(2)
0 = 3

2(λ + 2) , a
(2)
l = 3λ + 4l2 + 4(λ + 1)l

2(λ + 2l)(λ + 2l + 2) ,

b
(2)
0 =

√
πΓ(λ + 1/2)
2Γ(λ + 2) , b

(2)
l = l(2l + 1)(λ + l)(2λ + 2l − 1)

4(λ + 2l − 1)(λ + 2l)2(λ + 2l + 1) .(2.5)

Actually, these polynomials are the (monic) Jacobi polynomials transformed to the
interval [0, 1], with parameters (λ − 1/2, ∓1/2), i.e.,

(2.6) p
(1)
l (x) = 1

2l
p

(λ−1/2,−1/2)
l (2x − 1), p

(2)
l (x) = 1

2l
p

(λ−1/2,1/2)
l (2x − 1),

where p
(α,β)
l are the monic Jacobi polynomials with respect to the weight function

(1 − x)α(1 + x)β on the interval [−1, 1] (see [9, pp. 131–140]).
Milovanović in [10] showed that, for λ = 1/2, the coefficients (2.4) and (2.5) reduce

to the ones for the polynomials Q(1)(x) and Q(2)(x), respectively.
Let a

(α,β)
l and b

(α,β)
l be the recurrence coefficients for the monic Jacobi polynomials

p
(α,β)
l . It is easy to see that for l ⩾ 1 we have

a
(1)
l = a

(λ−1/2,−1/2)
l + 1

2 , b
(1)
l = b

(λ−1/2,−1/2)
l

4 ,(2.7)

a
(2)
l = a

(λ−1/2,1/2)
l + 1

2 , b
(2)
l = b

(λ−1/2,1/2)
l

4 .(2.8)
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We may also be interested in the cases λ = 0 and λ = 1. Let Tl(x), Ul(x), Vl(x)
and Wl(x) be the Chebyshev polynomials of first, second, third and fourth kinds,
respectively. For λ = 0 we get p

(1)
l (x) = 1

2l Tl(2x − 1) and p
(2)
l (x) = 1

2l Vl(2x − 1).
Similarly, for λ = 1 we obtain p

(1)
l (x) = 1

2l Wl(2x − 1) and p
(2)
l (x) = 1

2l Ul(2x − 1). In
each of these cases, the generalized averaged Gaussian quadrature formula coincides
with the Gauss-Kronrod quadrature formula.

It was also proved in [10] that the polynomials Q(3)(x) and Q(4)(x) are orthogonal
on [0, 1] with respect to the weight functions

(2.9) w(3)(x) = 2/
√

x

4(tanh−1 √
x)2 + π2 and w(4)(x) = 2

√
x

4(tanh−1 √
x)2 + π2 ,

respectively. The corresponding orthogonal polynomials are non-classical on [0, 1] and
their respective recurrence coefficients are

a
(3)
0 = 4

15 , a
(3)
l = 8l2 + 12l + 3

(4l + 1)(4l + 5) , b
(3)
l = (2l)2(2l + 1)2

(4l − 1)(4l + 1)2(4l + 3) ,

and

a
(4)
0 = 11

21 , a
(4)
l = 8l2 + 20l + 11

(4l + 3)(4l + 7) , b
(4)
l = (2l + 1)2(2l + 2)2

(4l + 1)(4l + 3)2(4l + 5) .

Later on we will present some examples showing the error estimates for the Gauss
quadrature with respect to these weights using the mentioned averaged formulas.

3. The Generalized Averaged Gaussian Formula QL
2l+1

The generalized averaged Gaussian formula QL
2l+1, introduced in [8], is internal if

the smallest zero xπ
1 and the largest zero xπ

l+1 of the polynomial
πl+1(x) = pl+1(x) − βlpl−1(x)

belong to the interval [0, 1] (see [8]). Here pj, j = 0, 1, . . ., are the orthogonal
polynomials and βj, j = 1, 2, . . ., the recurrence coefficients corresponding to the
original weight function. The largest zero xπ

l+1 belongs to [0, 1] if and only if
pl+1(1)

βlpl−1(1) ⩾ 1.

Similarly, the smallest zero xπ
1 belongs to [0, 1] if and only if

pl+1(0)
βlpl−1(0) ⩾ 1.

Obviously, the previous conditions are equivalent to the conditions for the Jacobi
polynomials with the same parameters. Indeed, using (2.6)–(2.8), these conditions
reduce to

p
(λ−1/2,∓1/2)
l+1 (x)

β
(λ−1/2,∓1/2)
l p

(λ−1/2,∓1/2)
l−1 (x)

⩾ 1,
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where x ∈ {−1, 1}. Hence, Theorem 3 from [7] can be applied.
For the weight function w(1)(x), the conditions (18) and (19) from [7] reduce to

2λ3 + (8l − 1)λ2 + (8l2 − 1)λ ⩾ 0 and λ2 − λ ⩾ 0,

respectively. The first condition obviously holds for λ ⩾ 0, but not for λ ∈ (−1/2, 0)
and sufficiently large l (the leading coefficient in l in the latter case is negative). The
second condition holds for λ ∈ (−1/2, 0] ∪ [1, ∞).

Similarly, for the weight function w(2)(x), the conditions (18) and (19) from [7]
reduce to

2λ3 + (8l + 3)λ2 + (8l2 + 8l + 1)λ ⩾ 0 and 8l2 + (8λ + 8)l + 3λ2 + 3λ ⩾ 0,

respectively. The first condition holds for λ ⩾ 0, but not for λ ∈ (−1/2, 0) and
sufficiently large l. The second condition holds for λ > −1/2.

Thus we have the following result.

Theorem 3.1. The generalized averaged Gaussian formula QL
2l+1 for the weight func-

tions w(1)(x) and w(2)(x) is internal when λ ⩾ 1 and λ ⩾ 0, respectively.

4. The Generalized Averaged Gaussian Formula QS
2l+1

Consider the generalized averaged formula QS
2l+1 introduced in [16]. This formula

is internal if the smallest zero xF
1 and the largest zero xF

l+1 of the polynomial
Fl+1(x) = pl+1(x) − βl+1pl−1(x)

belong to the interval [0, 1] (see [16]). Here pj, j = 0, 1, . . ., are the orthogonal
polynomials and βj, j = 2, 3, . . ., the recurrence coefficients corresponding to the
original weight function. The largest zero xF

l+1 belongs to [0, 1] if and only if
pl+1(1)

βl+1pl−1(1) ⩾ 1.

Similarly, the smallest zero xF
1 belongs to [0, 1] if and only if

pl+1(0)
βl+1pl−1(0) ⩾ 1.

As for the formula QL
2l+1, the previous conditions reduce to ones for the correspond-

ing Jacobi polynomials. So we use Theorem 3.1 from [17].
For the weight function w(1)(x), the conditions (3.5) and (3.6) from [17] reduce to

2λ3 + (8l + 3)λ2 + (8l2 − 5)λ ⩾ 0 and λ − λ2 ⩾ 0.

The first condition holds for λ ⩾ 0, but not for λ ∈ (−1/2, 0) and sufficiently large l.
On the other hand, the second condition holds for λ ∈ [0, 1].

For the weight function w(2)(x), the conditions (3.5) and (3.6) from [17] reduce to
2λ3 + (8l + 7)λ2 + (8l2 + 8l − 3)λ ⩾ 0 and 8l2 + (8λ + 8)l + 7λ − λ2 ⩾ 0.



GENERALIZED AVERAGED GAUSSIAN FORMULAS FOR CERTAIN WEIGHT FUNCTIONS301

The first condition obviously holds for λ ⩾ 0, but not for λ ∈ (−1/2, 0) and sufficiently
large l. The second condition holds for λ ∈ (−1/2, 7), whereas for λ ⩾ 7 we have

8l2 + (8λ + 8)l + 7λ − λ2 > 8l2 + 8λl − λ2 ⩾ 0, for l ⩾

√
6 − 2
4 λ.

Hence, we have the following result.

Theorem 4.1. The generalized averaged Gaussian formula QS
2l+1 for the weight func-

tion w(1)(x) is internal when λ ∈ [0, 1]. In the case of the weight function w(2)(x), that
formula is internal when λ ∈ [0, 7). For λ ⩾ 7, internality occurs when l ⩾

√
6−2
4 λ.

Now let us consider the cases λ = 0 and λ = 1, i.e., the polynomials 1
2l Tl(2x − 1),

1
2l Vl(2x − 1), 1

2l Wl(2x − 1) and 1
2l Ul(2x − 1). We have αl = α and βl = β > 0 for

l ⩾ r, where r = 2 for the polynomial 1
2l Tl(2x − 1) and r = 1 for the polynomials

1
2l Vl(2x − 1), 1

2l Wl(2x − 1) and 1
2l Ul(2x − 1). Hence, Theorem 3.1 from [18] can be

applied and we have the following result.

Theorem 4.2. For the weight function w(1)(x) with λ = 0 and l ⩾ 3, the quadrature
formulas QL

2l+1 and QS
2l+1 have the algebraic degree of exactness at least 3l + 1. Hence,

these formulas coincide with the corresponding Gauss-Kronrod quadrature formula and
the monic polynomials πl+1 ≡ Fl+1 coincide with the corresponding monic Stieltjes
polynomials. The same results hold for the the weight function w(1)(x), when λ = 1
and weight function w(2)(x) when λ ∈ {0, 1} and l ⩾ 1.

Using the previous fact, one has a simple method to compute the Gauss-Kronrod
quadrature formula. The computation of the latter formula is more complicated in
general (see [5]).

5. Truncated Generalized Averaged Gaussian Formulas

Let us consider the truncated generalized averaged Gaussian formulas Q
(l−r)
2l−r+1

(l ⩾ 2) introduced in [14] for r = l − 1. This formula is internal if the smallest zero τ1
and the largest zero τl+2 of the polynomial

(5.1) tl+2(x) = (x − αl−1)pl+1(x) − βl+1pl(x)

belong to the interval [0, 1] (see [1]). Here pj, j = 2, 3, . . ., are the orthogonal
polynomials and αj, j = 1, 2, . . ., and βj, j = 3, 4, . . ., the recurrence coefficients
corresponding to the original weight function.

Obviously, in the case of the weight functions given in (2.3), the polynomials (5.1)
have two outermost zeros inside the interval [0, 1] if and only if the corresponding
polynomials for the Jacobi weight functions with the same parameters have two
outermost zeros inside the interval [−1, 1]. Using Theorem 3.4 from [1], we have that
internality holds for l ⩾ 3.



302 R. MUTAVDŽIĆ

Let l = 2. In the case of the weight function w(1)(x), the conditions (3.12) and
(3.13) from [1] reduce to

−λ3 + 19λ2 + 105λ + 45 ⩾ 0 and 2λ4 + 25λ3 + 81λ + 63λ + 45 ⩾ 0.

The first condition holds for λ ∈ [λ1, λ2], where λ1 ≈ −0.46943 and λ2 ≈ 23.54142 are
the largest two zeros of the polynomial −x3 + 19x2 + 105x + 45. The second condition
holds for λ > −1/2.

Similarly, for the weight function w(2)(x), this formula is internal if and only if

λ3 + 48λ2 + 260λ + 216 ⩾ 0 and 2λ4 + 31λ3 + 136λ2 + 188λ + 168 ⩾ 0.

These conditions hold for λ > −1/2.

Theorem 5.1. The truncated generalized averaged Gaussian formula for the weight
function w(1)(x) is internal when λ > −1/2 and l ⩾ 3. For l = 2 internality holds
when λ ∈ [λ1, λ2], where λ1 ≈ −0.46943 and λ2 ≈ 23.54142 are the largest two zeros
of the polynomial −x3 +19x2 +105x+45. For the weight function w(2)(x) this formula
is internal when λ > −1/2.

6. Numerical Results

Example 6.1. We illustrate Theorems 3.1, 4.1 and 5.1 through some computations in
the case of the weight function w(2) for some values of l and λ. In the considered
cases, the corresponding averaged formulas are internal.

Table 1 displays the values of the nodes xπ
1 and xπ

l+1 for the formula QL
2l+1.

Table 2 displays the values of the nodes xF
1 and xF

l+1 for the formula QS
2l+1. Note

that for λ = 1 this formula coincides with the previous one, and also with the Gauss-
Kronrod quadrature formula (see Theorem 4.2).

Table 3 displays the values of the nodes τ1 and τl+2 for the formula Q
(1)
l+2.

Table 1: The values of xπ
1 and xπ

l+1 for w(2) and some l and λ.
λ l xπ

1 xπ
l+1

0.5 5 1.84918630347802(−2) 9.93315648803352(−1)
10 5.32426071493249(−3) 9.98085997371715(−1)
15 2.48373203616388(−3) 9.99108179903793(−1)
20 1.43168514326074(−3) 9.99486155846300(−1)

1 5 1.70370868554659(−2) 9.82962913144534(−1)
10 5.08927905953363(−3) 9.94910720940466(−1)
15 2.40763666390156(−3) 9.97592363336098(−1)
20 1.39810140940993(−3) 9.98601898590590(−1)
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Table 2: The values of xF
1 and xF

l+1 for w(2) and some l and λ.
λ l xF

1 xF
l+1

0.5 5 1.85485046684558(−2) 9.93270563061661(−1)
10 5.32892821283948(−3) 9.98082336550544(−1)
15 2.48474645373049(−3) 9.99107386760496(−1)
20 1.43202203935648(−3) 9.99485892741121(−1)

1 5 1.70370868554659(−2) 9.82962913144534(−1)
10 5.08927905953363(−3) 9.94910720940466(−1)
15 2.40763666390156(−3) 9.97592363336098(−1)
20 1.39810140940993(−3) 9.98601898590590(−1)

Table 3: The values of τ1 and τl+2 for w(2) and some l and λ.
λ l τ1 τl+2

0.5 5 4.05074383379349(−2) 9.76146311190531(−1)
10 1.50966909367400(−2) 9.91134246875255(−1)
15 7.80960712033176(−3) 9.95418464436467(−1)
20 4.75922686471797(−3) 9.97209253940011(−1)

1 5 3.80602337443566(−2) 9.61939766255643(−1)
10 1.45290912869740(−2) 9.85470908713026(−1)
15 7.59612349389597(−3) 9.92403876506104(−1)
20 4.65702698183462(−3) 9.95342973018165(−1)

Example 6.2. We find the outermost nodes in the case of the weight function w(1) for
the formula QL

2l+1 with λ = 0.5 (Table 4) and for the formula QS
2l+1 with λ = −0.2

(Table 5) for some l. Here these formulas have exterior node(s).

Table 4: The values of xπ
1 and xπ

l+1 for w(1), λ = 0.5 and some l.
λ l xπ

1 xπ
l+1

0.5 5 −1.03583467673738(−5) 9.91983668229218(−1)
10 −7.09110640371522(−7) 9.97894782375997(−1)
15 −1.44570778097492(−7) 9.99048751274800(−1)
20 −4.64835853269242(−8) 9.99460470025489(−1)

Table 5: The values of xF
1 and xF

l+1 for w(2), λ = −0.2 and some l.
λ l xF

1 xF
l+1

−0.2 5 −4.13229856738924(−5) 1.00140197341566
10 −2.37471751038235(−6) 1.00033417984287
15 −4.59266799101858(−7) 1.00014681665572
20 −1.43959966526914(−7) 1.00008217031089
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Example 6.3. Consider the integral

I(f) =
∫ 1

0
f(t)w(t)dt,

where f(t) = 999.1log10(ε+t), ε = 10−6 and w(t) = w(2)(t). In Table 6, the estimation
of the errors |I(f) − QG

l (f)| for Gauss quadrature formula are obtained by means
of the quantities ELG =

∣∣∣QL
2l+1(f) − QG

l (f)
∣∣∣, ESG = |QS

2l+1(f) − QG
l (f)| and ET SG =

|Q(1)
l+2(f) − QG

l (f)|, for some l and λ. As in the previous example, QL
2l+1 ≡ QS

2l+1 for
λ = 1. The sharp errors are denoted by Error.

Table 6: The estimates ELG, ESG, ET SG and the sharp errors Error for some l and λ.
λ l ELG ESG ET SG Error

0.5 5 1.5198(−10) 1.5192(−10) 1.4323(−10) 1.5219(−10)
10 4.3114(−13) 4.3106(−13) 3.4123(−13) 4.3190(−13)
15 1.3219(−14) 1.3218(−14) 8.7665(−15) 1.3244(−14)
20 1.0866(−15) 1.0865(−15) 6.1493(−16) 1.0886(−15)

1 5 1.1092(−10) 1.1092(−10) 1.0410(−10) 1.1108(−10)
10 3.5846(−13) 3.5846(−13) 2.8175(−13) 3.5911(−13)
15 1.1599(−14) 1.1599(−14) 7.6384(−15) 1.1621(−14)
20 9.8190(−16) 9.8190(−16) 5.5211(−16) 9.8378(−16)

Note that the integrand in the previous example is not defined for some nodes in
Example 6.2.

Example 6.4. The next table displays the same estimations as in the previous example
for the integrand f(t) = e3t sin 10t and the weight function w(t) = w(3)(t) from
(2.9). Note that for the weight functions given in (2.9), the corresponding orthogonal
polynomials are non-classical. Thus there is no analytical expression for the orthogonal
polynomials. Consequently, there is no general claim for internality of the averaged
formulas.

Table 7: The estimates ELG, ESG, ET SG and the sharp errors Error for some l.
l ELG ESG ET SG Error
5 3.4273(−3) 3.4276(−3) 3.4209(−3) 3.4276(−3)
10 8.4359(−11) 8.4359(−11) 8.4340(−11) 8.4359(−11)
15 9.6941(−21) 9.6941(−21) 9.6934(−21) 9.6941(−21)
20 3.1798(−32) 3.1798(−32) 3.1797(−32) 3.1798(−32)
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